Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Arch Biochem Biophys ; 756: 109994, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626818

RESUMO

Interactions between the plasma cells and the BM microenvironment of Multiple myeloma (MM) take place through factors such as exosomes. Many studies have confirmed the role of exosomes in these interactions. By carrying proteins, cytokines, lipids, microRNAs, etc. as their cargo, exosomes can regulate the interactions between MM plasma cells and neighboring cells and participate in the signaling between cancer cells and the environment. It has been shown that MM-derived exosomes can induce angiogenesis, enhance osteoblast activity, confer drug resistance, and have immunosuppressive properties. Abnormal cargos in endosomes originating from MM patients, can be used as a cancer biomarker to detect or screen early prognosis in MM patients. The native nanostructure of exosomes, in addition to their biocompatibility, stability, and safety, make them excellent candidates for therapeutic, drug delivery, and immunomodulatory applications against MM. On the other hand, exosomes derived from dendritic cells (DC) may be used as vaccines against MM. Thanks to the development of new 'omics' approaches, we anticipate to hear more about exosomes in fight against MM. In the present review, we described the most current knowledge on the role of exosomes in MM pathogenesis and their potential role as novel biomarkers and therapeutic tools in MM.


Assuntos
Exossomos , Mieloma Múltiplo , Exossomos/metabolismo , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/terapia , Mieloma Múltiplo/patologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/metabolismo , Humanos , Biomarcadores Tumorais/metabolismo , Prognóstico , Microambiente Tumoral , Animais
3.
Nanomedicine (Lond) ; 18(5): 437-453, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-37199259

RESUMO

Aim: We investigated the delivery of sorafenib (SFB) to breast cancer spheroids by natural killer cell-derived exosomes (NK-Exos). Methods: SFB-NK-Exos were constructed by electroporation. Their antitumor effects were evaluated by methyl thiazolyl tetrazolium, acridine orange/ethidium bromide, 4',6-diamidino-2-phenylindole, annexin/propidium iodide, scratch and migration assay, colony formation, RT-PCR, western blot and lipophagy tests. Result: The loading efficacy was 46.66%. SFB-NK-Exos-treated spheroids showed higher cytotoxic effects (33%) and apoptotic population (44.9%). Despite the reduction of SFB concentration in the SFB-NK-Exos formulation, similar cytotoxic effects to those of free SFB were observed. Increased intracellular trafficking, sustained release of the drug and selective inhibitory effects demonstrated efficient navigation. Conclusion: This is the first report for SFB loading into NK-Exos, which led to significant cytotoxic intensification against cancer cells.


What is this summary about? This study describes the delivery of an anticancer drug called sorafenib (SFB) to laboratory-grown spherical masses of cancer cells called spheroids. Saucer-like cellular structures called exosomes were used as drug-delivery tools. These exosomes were produced by a subgroup of immune cells called natural killer (NK) cells. NK cells are responsible for killing cancer cells. So, these exosomes share similar anticancer properties with NK cells. We wanted to test whether exosomes loaded with SFB would have better anticancer effects. What were the results? Using different methods, SFB was loaded within the exosomes and delivered to the spheroids. The obtained results showed that a combination of exosomes and SFB could improve the targeting efficacy, reducing the side effects to the normal cells and allowing continuous release of the drug. The spheroids were killed with higher efficacy following this treatment. What do the results of the study mean? The combination of NK cell-derived exosomes and SFB could lead to better cytotoxicity against cancer cells. Therefore, this strategy could have better anticancer effects compared with SFB treatment alone.


Assuntos
Antineoplásicos , Exossomos , Neoplasias de Mama Triplo Negativas , Humanos , Sorafenibe/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Células Matadoras Naturais , Apoptose
4.
Front Cell Dev Biol ; 10: 1074443, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619860

RESUMO

Phagocytosis is a key component of the innate immune system used to ingest apoptotic cells and microorganisms for their destruction and recycling of macromolecules and the presentation of antigens to adaptive immune system cells. The newly formed vacuole or nascent phagosome undergoes a maturation process reminiscent of the classical endocytic maturation process, reaching a highly degradative phagolysosome stage before its tubulovesicular breakdown into lysosomes. The process is highly regulated and can be disrupted by various pathogenic organisms. The exchange of proteins, lipids, and other metabolites between organelles, including maturing phagosomes, is enabled by two processes, vesicular and non-vesicular transport at membrane contact sites (MCS). For decades the specific role(s) of the endoplasmic reticulum (ER) in phagocytosis has been the subject of much debate. In parallel, the last two decades have seen a burst in research on the numerous roles of ER contact sites and resident proteins in all aspects of organelle biology. Here, in this minireview, we describe ER-phagosome contact sites' functions from the early stages of particle engulfment to the phagolysosome dissolution into lysosomes. We also discuss several aspects of ER-phagosome contact sites that remain to be explored.

5.
Nanomedicine (Lond) ; 16(7): 553-567, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33728944

RESUMO

Aim: Here, we established a reliable strategy for generation and characterization of targeted radiolabeled exosomes for the detection of HER2-positive cells quantitatively. Materials & methods: Targeted exosomes (T-exos) were radiolabeled by two different radiotracers, [99mTc]Tc-HMPAO or [111In]In-oxine. The labeling efficiency and stability were assessed using exosome exclusive spin columns. HER2-positive and -negative cells were treated with [111In]In-oxine-exosomes after 3 and 24 h. Results: [111In]In-oxine labeling did not change the binding ability and general features of the exosomes. With [111In]In-oxine, 70% labeling efficiency and 78% radiochemical stability over 24 h were achieved. [111In]In-oxine-T-exos showed greater uptake by HER2-positive cells compared with untargeted exosomes. Conclusion: [111In]In-oxine-T-exos could potentially be used as an effective imaging tool for HER2 expression.


Assuntos
Exossomos , Compostos Radiofarmacêuticos , Receptor ErbB-2
6.
Int J Nanomedicine ; 14: 5679-5690, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31413568

RESUMO

BACKGROUND: Exosomes are natural nanovesicles with unique characteristics, such as long circulating half-life, the intrinsic ability to target tissues, biocompatibility, and minimal or no inherent systemic toxicity. Mesenchymal stem cells produce large amounts of exosomes with regenerative properties and more stability in human plasma. TUBO breast cancer cell lines overexpress rat HER2/neu protein. METHODS: Targeted exosomes were isolated from transduced bone marrow mesenchymal stem cells. Doxorubicin was encapsulated into exosomes by electroporation. Flow cytometry was used to assess the attachment of exosomes to the target cells. The in vitro cytotoxicity effect of targeted doxorubicin-loaded exosomes on TUBO cells was determined using MTT assay. Selective delivery of doxorubicin to tumor tissues was analyzed by measuring the auto-fluorescence of doxorubicin by in vivo imaging system. Moreover, tumor growth inhibition and body weight were monitored following injection of free doxorubicin, and targeted and untargeted doxorubicin-loaded exosomes in a TUBO breast cancer model. Finally, mouse tissues were examined for the presence of intrinsic fluorescence of doxorubicin. RESULTS: Flow cytometry results revealed significant differences in binding of targeted exosomes to HER2-positive (46.05%) and HER2-negative (13.9%) cells. The results of MTT assay showed that cytotoxicity of targeted doxorubicin-loaded exosomes was higher than free doxorubicin at 72 hours. Selective distribution of targeted doxorubicin-loaded exosomes in the target tissues of the murine breast cancer model suggested specific delivery of doxorubicin by targeted exosomes, rather than untargeted exosomes. Free doxorubicin and untargeted doxorubicin-loaded exosomes showed insignificant effects, whereas targeted doxorubicin-loaded exosomes reduced the tumor growth rate. CONCLUSION: Herein, we report efficient delivery of targeted doxorubicin-loaded exosomes in vitro, corroborated with a significant reduction of murine breast cancer model tumor growth rate.


Assuntos
Doxorrubicina/farmacologia , Sistemas de Liberação de Medicamentos , Receptor ErbB-2/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Exossomos/metabolismo , Exossomos/ultraestrutura , Feminino , Células HEK293 , Humanos , Células-Tronco Mesenquimais/metabolismo , Camundongos Nus , Ratos , Distribuição Tecidual/efeitos dos fármacos
7.
Breast Cancer ; 26(2): 215-228, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30284194

RESUMO

BACKGROUND: It has been reported that enhancing the cellular levels of miR-193b as well as breast cancer-metastasis-suppressor-1 (BRMS1) protein is associated with diminished metastatic characteristics in breast cancer. In view of these facts, as a new therapeutic intervention, we employed a restoration-based strategy using both miR-193b-3p mimic and optimized BRMS1 in the context of a chimeric construct. METHODS: miR-193b-3p and BRMS1 genes were cloned and the resulting plasmids were transfected into the MDA-MB231, MCF-7 and MCF-10A cell lines. microRNA expression levels were assessed by rea time PCR using LNA-primer and protein expression was confirmed by western blot method. Then, apoptosis, MTT, colony formation and invasion assays were carried out. RESULTS: The expression levels of miR-146a, miR-146b and miR-373 were up-regulated, while the miR-520c, miR-335 and miR-10b were down-regulated following the exogenous BRMS1 expression. The exogenous over-expression of BRMS1 was associated with higher amounts of endogenous miR-193b-3p expression and enabled more efficient targeting of the 3'UTR of uPA. Although, miR-193b-3p and BRMS1 are individually capable of suppressing breast cancer cell growth, migration and invasion abilities, their cistronic expression was capable of enhancing the ability to repress the breast cancer cells invasion. CONCLUSIONS: Our results collectively indicated the existence of an additive anti-metastatic effect between miR-193b-3p and BRMS1. Moreover, it has been hypothesized that the exogenous expression of a protein can effect endogenous expression of non-relevant microRNA. Our findings provide new grounds for miR-restoration therapy applications as an amenable anti-metastatic strategy.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , MicroRNAs/genética , Proteínas Repressoras/genética , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Movimento Celular/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proibitinas , Reação em Cadeia da Polimerase em Tempo Real , Proteínas Repressoras/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA