Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 10(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272574

RESUMO

In this paper, an artificial neural network is implemented for the sake of predicting the thermal conductivity ratio of TiO2-Al2O3/water nanofluid. TiO2-Al2O3/water in the role of an innovative type of nanofluid was synthesized by the sol-gel method. The results indicated that 1.5 vol.% of nanofluids enhanced the thermal conductivity by up to 25%. It was shown that the heat transfer coefficient was linearly augmented with increasing nanoparticle concentration, but its variation with temperature was nonlinear. It should be noted that the increase in concentration may cause the particles to agglomerate, and then the thermal conductivity is reduced. The increase in temperature also increases the thermal conductivity, due to an increase in the Brownian motion and collision of particles. In this research, for the sake of predicting the thermal conductivity of TiO2-Al2O3/water nanofluid based on volumetric concentration and temperature functions, an artificial neural network is implemented. In this way, for predicting thermal conductivity, SOM (self-organizing map) and BP-LM (Back Propagation-Levenberq-Marquardt) algorithms were used. Based on the results obtained, these algorithms can be considered as an exceptional tool for predicting thermal conductivity. Additionally, the correlation coefficient values were equal to 0.938 and 0.98 when implementing the SOM and BP-LM algorithms, respectively, which is highly acceptable.

2.
Entropy (Basel) ; 20(7)2018 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-33265574

RESUMO

An exergy analysis of a novel integrated power system is represented in this study. A Solid Oxide Fuel Cell (SOFC), which has been assisted with a Gas Turbine (GT) and Organic Rankine Cycle (ORC) by employing liquefied natural gas (LNG) as a heat sink in a combined power system is simulated and investigated. Initially in this paper, the integrated power system and the primary concepts of the simulation are described. Subsequently, results of the simulation, exergy analysis, and composite curves of heat exchangers are represented and discussed. The equations of the exergy efficiency and destruction for the main cycle's units such as compressors, expanders, pumps, evaporators, condensers, reformers, and reactors are presented. According to the results, the highest exergy destruction is contributed to the SOFC reactor, despite its acceptable exergy efficiency which is equal to 75.7%. Moreover, the exergy efficiencies of the ORC cycle and the whole plant are determined to be 64.9% and 39.9%, respectively. It is worth noting that the rational efficiency of the integrated power system is 53.5%. Among all units, the exergy efficiency of the LNG pump is determined to be 11.7% the lowest exergy efficiency among the other investigated components, indicating a great potential for improvements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA