Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36014511

RESUMO

The deep eutectic solvent (DES)-based biocatalysis of l-menthol acylation was designed for the production of fatty acid l-menthyl ester (FME) using fatty acid methyl ester (FAME). The biocatalytic reaction was assisted by a lipase enzyme in the DES reaction medium. ւՒ-menthol and fatty acids (e.g., CA-caprylic acid; OA-oleic acid; LiA-linoleic acid; and LnA-linolenic acid) were combined in the binary mixture of DES. In this way, the DES provided a nonpolar environment for requested homogeneity of a biocatalytic system with reduced impact on the environment. The screening of lipase enzyme demonstrated better performance of immobilized lipase compared with powdered lipase. The performance of the biocatalytic system was evaluated for different DES compositions (type and concentration of the acid component). l-menthol:CA = 73:27 molar ratio allowed it to reach a maximum conversion of 95% methyl lauric ester (MLE) using a NV (Candida antarctica lipase B immobilized on acrylic resin) lipase biocatalyst. The recyclability of biocatalysts under optimum conditions of the system was also evaluated (more than 80% recovered biocatalytic activity was achieved for the tested biocatalysts after five reaction cycles). DES mixtures were characterized based on differential scanning calorimetry (DSC) and refractive index analysis.


Assuntos
Ésteres , Mentol , Acilação , Biocatálise , Enzimas Imobilizadas/química , Ácidos Graxos , Lipase/química , Mentol/química
2.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36015141

RESUMO

The novelty in this study is the development of new orodispersible tablets containing nifedipine (NIF) as the active ingredient. Initially, the formation of inclusion complexes between nifedipine and two derivatives of beta-cyclodextrin, namely, hydroxypropyl-ß-cyclodextrin (HP-ß-CD) and methyl-ß-cyclodextrin (Me-ß-CD), was established. Inclusion complexes of nifedipine were prepared by different procedures: kneading, coprecipitation and lyophilization methods, using a 1:1 molar ratio among the drug and cyclodextrin compounds. A physical mixture was also developed for comparison, with the same molar ratio. The physicochemical and structural properties of these obtained complexes were subsequently analysed using Fourier-transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry and X-ray diffraction techniques. The lyophilization method of preparation leads to obtaining the complete inclusion of nifedipine in the used cyclodextrin cavity, for both the derivative cyclodextrins. After that, preformulation studies and manufacturing of orodispersible tablets containing NIF-HP-ß-CD and NIF-Me-ß-CD, respectively, inclusion complexes were advanced. The obtained findings show that only F3 (which contains NIF-HP-ß-CD) and F6 (which contains NIF-Me-ß-CD) have a suitable flowability for the direct compression materials.

3.
Materials (Basel) ; 15(15)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-35955152

RESUMO

The development of new orally dispersible tablets containing amlodipine (AML) inclusion complexes in hydroxypropyl-ß-cyclodextrin (HP-ß-CD) and in methyl-ß-cyclodextrin (Me-ß-CD) was studied. The methods of obtaining amlodipine and the physical and chemical properties of the inclusion complexes using the two cyclodextrins was investigated separately. Solid inclusion complexes were obtained by three methods: kneading, coprecipitation, and lyophilization, at a molar ratio of 1:1. For comparison, a physical mixture in the same molar ratio was prepared. The aim of the complexation process was to improve the drug solubility. As the lyophilization method leads to a complete inclusion of the drug in the guest molecule cavity, for both used cyclodextrins, these types of compounds were selected as active ingredients for the design of orally dispersible tablets. Subsequently, the formulation of the orodispersible tablets containing AML-HP-ß-CD and AML-Me-ß-CD inclusion complexes and quality parameters of the final formulation were evaluated. The results prove that F1 and F4 formulations, based on silicified microcrystalline cellulose, which contains insignificant proportions of very small or very large particles, had the lowest moisture degree (3.52% for F1 and 4.03% for F4). All of these demonstrate their porous structure, which led to good flowability and compressibility performances. F1 and F4 formulations were found to be better to manufacture orally dispersible tablets.

4.
Molecules ; 27(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35335371

RESUMO

The aim of the present study was to manufacture new orally disintegrating tablets containing nimodipine-hydroxypropyl-ß-cyclodextrin and nimodipine-methyl-ß-cyclodextrin inclusion complexes. For obtaining a better quality of the manufactured tablets, three methods of the preparation of inclusion complexes, in a 1:1 molar ratio, were used comparatively; namely, a solid-state kneading method and two liquid state coprecipitation and lyophilization techniques. The physical and chemical properties of the obtained inclusion complexes, as well as their physical mixtures, were investigated using Fourier transformed infrared spectroscopy, scanning electron microscopy, X-ray diffraction analyses, and differential scanning calorimetry. The results showed that the lyophilization method can be successfully used for a better complexation. Finally, the formulation and precompression studies for tablets for oral dispersion, containing Nim-HP-ß-CD and Nim-Me-ß-CD inclusion complexes, were successfully assessed.


Assuntos
Química Farmacêutica , Nimodipina , 2-Hidroxipropil-beta-Ciclodextrina , Química Farmacêutica/métodos , Nimodipina/química , Solubilidade , Comprimidos , beta-Ciclodextrinas
5.
Front Bioeng Biotechnol ; 9: 650281, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34708023

RESUMO

The exposure of nanoparticles (NPs) to biological fluids leads to the formation of a protein coating that is known as protein corona (PC). Since PC formation is influenced by the physicochemical properties of the nanoparticles, the understanding of the interplay of the factors that participate in this process is crucial for the development of nanomaterials as cell-targeted delivery vehicles. In general, it is accepted that the PC formation is a complex and dynamic process, which depends on the composition of the medium and the properties of the NP mainly size, shape, and superficial charge. Interestingly, although the interaction between the protein and the NP is essentially a superficial phenomenon, the influence of the roughness of the nanoparticle surface has been scarcely studied. In this work, the influence of superficial roughness and porosity has been studied with the aid of nanodifferential scanning calorimetry (nano-DSC) and isothermal titration calorimetry (ITC) using mesoporous silica nanoparticles (MSNs) as an NP model. The interaction process of the proteins with the NP surface was analyzed by ITC measurements, while the stability and denaturation of the proteins was monitored by nano-DSC. Thanks to the complementarity of these two techniques, a more complete insight into the PC formation on the pores has been accomplished.

6.
Nat Nanotechnol ; 16(6): 644-654, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34017099

RESUMO

Nanotechnology is a key enabling technology with billions of euros in global investment from public funding, which include large collaborative projects that have investigated environmental and health safety aspects of nanomaterials, but the reuse of accumulated data is clearly lagging behind. Here we summarize challenges and provide recommendations for the efficient reuse of nanosafety data, in line with the recently established FAIR (findable, accessible, interoperable and reusable) guiding principles. We describe the FAIR-aligned Nanosafety Data Interface, with an aggregated findability, accessibility and interoperability across physicochemical, bio-nano interaction, human toxicity, omics, ecotoxicological and exposure data. Overall, we illustrate a much-needed path towards standards for the optimized use of existing data, which avoids duplication of efforts, and provides a multitude of options to promote safe and sustainable nanotechnology.

7.
Chem Res Toxicol ; 33(8): 2054-2071, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32600046

RESUMO

Understanding nanomaterial (NM)-protein interactions is a key issue in defining the bioreactivity of NMs with great impact for nanosafety. In the present work, the complex phenomena occurring at the bio/nano interface were evaluated in a simple case study focusing on NM-protein binding thermodynamics and protein stability for three representative metal oxide NMs, namely, zinc oxide (ZnO; NM-110), titanium dioxide (TiO2; NM-101), and silica (SiO2; NM-203). The thermodynamic signature associated with the NM interaction with an abundant protein occurring in most cell culture media, bovine serum albumin (BSA), has been investigated by isothermal titration and differential scanning calorimetry. Circular dichroism spectroscopy offers additional information concerning adsorption-induced protein conformational changes. The BSA adsorption onto NMs is enthalpy-controlled, with the enthalpic character (favorable interaction) decreasing as follows: ZnO (NM-110) > SiO2 (NM-203) > TiO2 (NM-101). The binding of BSA is spontaneous, as revealed by the negative free energy, ΔG, for all systems. The structural stability of the protein decreased as follows: TiO2 (NM-101) > SiO2 (NM-203) > ZnO (NM-110). As protein binding may alter NM reactivity and thus the toxicity, we furthermore assessed its putative influence on DNA damage, as well as on the expression of target genes for cell death (RIPK1, FAS) and oxidative stress (SOD1, SOD2, CAT, GSTK1) in the A549 human alveolar basal epithelial cell line. The enthalpic component of the BSA-NM interaction, corroborated with BSA structural stability, matched the ranking for the biological alterations, i.e., DNA strand breaks, oxidized DNA lesions, cell-death, and antioxidant gene expression in A549 cells. The relative and total content of BSA in the protein corona was determined using mass-spectrometry-based proteomics. For the present case study, the thermodynamic parameters at bio/nano interface emerge as key descriptors for the dominant contributions determining the adsorption processes and NMs toxicological effect.


Assuntos
Nanoestruturas/toxicidade , Soroalbumina Bovina/antagonistas & inibidores , Dióxido de Silício/toxicidade , Termodinâmica , Titânio/toxicidade , Óxido de Zinco/toxicidade , Células A549 , Adsorção , Animais , Bovinos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Nanoestruturas/química , Soroalbumina Bovina/química , Dióxido de Silício/química , Titânio/química , Células Tumorais Cultivadas , Óxido de Zinco/química
8.
Brain Res ; 980(2): 213-20, 2003 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-12867261

RESUMO

Migraine headaches are often precipitated by stress and seem to involve neurogenic inflammation (NI) of the dura mater associated with the sensation of throbbing pain. Trigeminal nerve stimulation had been reported to activate rat dura mast cells and increase vascular permeability, effects inhibited by neonatal pretreatment with capsaicin implicating sensory neuropeptides, such as substance P (SP). The aim of the present study was to investigate NI, assessed by extravasation of 99-Technetium-gluceptate (99Tc-G), as well as the role of mast cells, SP and its receptor (NK-1R) in dura mater of mice in response to acute stress. Restraint stress for thirty min significantly increased 99Tc-G extravasation in the dura mater of C57BL mice. This effect was absent in W/W(v) mast cell-deficient mice and NK-1 receptor knockout mice (NK-1R-/-), but was unaltered in SP knockout mice (SP-/-). Acute restraint stress also resulted in increased dura mast cell activation in C57BL mice, but not in NK-1R-/- mice. These data demonstrate for the first time that acute stress triggers NI and mast cell activation in mouse dura mater through the activation of NK-1 receptors. The fact that SP-/- mice had intact vascular permeability response to stress indicates that some other NK-1 receptor agonist may substitute for SP. These results may help explain initial events in pathogenesis of stress-induced migraines.


Assuntos
Permeabilidade Capilar/fisiologia , Dura-Máter/metabolismo , Mastócitos/metabolismo , Receptores da Neurocinina-1/deficiência , Estresse Fisiológico/metabolismo , Animais , Corticosterona/sangue , Dura-Máter/irrigação sanguínea , Feminino , Masculino , Mastócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores da Neurocinina-1/genética , Receptores da Neurocinina-1/metabolismo , Estresse Fisiológico/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA