RESUMO
The iron-based superconductors (IBSs) of the recently discovered 1144 class, unlike many other IBSs, display superconductivity in their stoichiometric form and are intrinsically hole doped. The effects of chemical substitutions with electron donors are thus particularly interesting to investigate. Here, we study the effect of Co substitution in the Fe site of CaKFe4As4 single crystals on the critical temperature, on the energy gaps, and on the superfluid density by using transport, point-contact Andreev-reflection spectroscopy (PCARS), and London penetration depth measurements. The pristine compound (Tc≃36 K) shows two isotropic gaps whose amplitudes (Δ1 = 1.4-3.9 meV and Δ2 = 5.2-8.5 meV) are perfectly compatible with those reported in the literature. Upon Co doping (up to ≈7% Co), Tc decreases down to ≃20 K, the spin-vortex-crystal order appears, and the low-temperature superfluid density is gradually suppressed. PCARS and London penetration depth measurements perfectly agree in demonstrating that the nodeless multigap structure is robust upon Co doping, while the gap amplitudes decrease as a function of Tc in a linear way with almost constant values of the gap ratios 2Δi/kBTc.
RESUMO
Superconductors have revolutionized magnet technology, surpassing the limitations of traditional coils and permanent magnets. This work experimentally investigates the field-trapping ability of a MgB2 disc at various temperatures and proposes new hybrid (MgB2-soft iron) configurations using a numerical approach based on the vector potential (Aâ) formulation. The experimental characterization consists in measurements of trapped magnetic flux density carried out using cryogenic Hall probes located at different radial positions over the MgB2 sample, after a field cooling (FC) process and the subsequent removal of the applied field. Measurements were performed also as a function of the distance from the disc surface. The numerical modelling of the superconductor required the evaluation of the critical current density dependence on the magnetic flux density (Jc(B)) obtained through an iterative procedure whose output were successfully validated by the comparison between experimental and computed data. The numerical model, upgraded to also describe the in-field behavior of ARMCO soft iron, was then employed to predict the field-trapping ability of hybrid layouts of different shapes. The most promising results were achieved by assuming a hollow superconducting disc filled with a ferromagnetic (FM) cylinder. With such a geometry, optimizing the radius of the FM cylinder while the external dimensions of the superconducting disc are kept unchanged, an improvement of more than 30% is predicted with respect to the full superconducting disc, assuming a working temperature of 20 K.
RESUMO
The combination of conductive carbon together with magnetic particles is a consolidated strategy to produce cutting-edge fillers for the production of polymer composites able to shield against microwave radiation. In this work, we developed and characterized an iron-tailored biochar obtained from the pyrolysis of olive pruning which was added as filler for the preparation of epoxy composites. The biochar-based composites were obtained by keeping the filler concentration at 10 and 40 wt.%. An extensive characterization was carried out in order to assess the electrical and magnetic properties of the composites containing biochar and iron-tailored biochar. The highest DC electrical conductivity of 59 mS/m was observed in the 40 wt.% iron-tailored biochar-loaded composite, while the reduction of the filler loading led to a drastic reduction in conductivity: 60 µS/m in the 10 wt.%-loaded composite. Ferromagnetic behavior of composites containing iron-tailored biochar is visible in the emerging hysteretic behavior, with a magnetic signal increasing with the filler concentration. Finally, both the complex permittivity (ε') and the AC conductivity (σ) are enhanced by increasing the BC filler amount in the matrix, regardless of the presence of iron.
RESUMO
We report on the characterization of NbTi films at [Formula: see text] 11 GHz and in DC magnetic fields up to 4 T, performed by means of the coplanar waveguide resonator technique, providing quantitative information about the penetration depth, the complex impedance, and the vortex-motion-induced complex resistivity. This kind of characterization is essential for the development of radiofrequency cavity technology. To access the vortex-pinning parameters, the complex impedance was analyzed within the formalism of the Campbell penetration depth. Measurements in this frequency range allowed us to determine the complete set of vortex-pinning parameters and the flux flow resistivity, both analyzed and discussed in the framework of high-frequency vortex dynamics models. The analysis also benefits from the comparison with results obtained by a dielectric-loaded resonator technique on similar samples and by other ancillary structural and electromagnetic characterization techniques that provide us with a comprehensive picture of the material. It turns out that the normalized flux flow resistivity follows remarkably well the trend predicted by the time dependent Ginzburg-Landau theory, while the pinning constant exhibits a decreasing trend with the field which points to a collective pinning regime.
Assuntos
Filmes Cinematográficos , Tioinosina , Impedância Elétrica , Campos MagnéticosRESUMO
Waste stream valorization is a difficult task where the economic and environmental issues must be balanced. The use of complex metal-rich waste such as red mud is challenging due to the wide variety of metal oxides present such as iron, aluminum, and titanium. The simple separation of each metal is not economically feasible, so alternative routes must be implemented. In this study, we investigated the use of red mud mixed with hemp waste to produce biochar with high conductivity and good magnetic properties induced by the reduction of the metal oxides present in the red mud through carbothermal processes occurring during the co-pyrolysis. The resulting biochar enriched with thermally-reduced red mud is used for the preparation of epoxy-based composites that are tested for electric and magnetic properties. The electric properties are investigated under DC (direct current) regime with or without pressure applied and under AC (alternating current) in a frequency range from 0.5 up to 16 GHz. The magnetic measurements show the effective tailoring of hemp-derived biochar with magnetic structures during the co-pyrolytic process.
RESUMO
To reduce the use of carbon components sourced from fossil fuels, hemp fibers were pyrolyzed and utilized as filler to prepare EVA-based composites for automotive applications. The mechanical, tribological, electrical (DC and AC) and thermal properties of EVA/fiber biochar (HFB) composites containing different amounts of fibers (ranging from 5 to 40 wt.%) have been thoroughly studied. The morphological analysis highlighted an uneven dispersion of the filler within the polymer matrix, with poor interfacial adhesion. The presence of biochar fibers did not affect the thermal behavior of EVA (no significant changes of Tm, Tc and Tg were observed), notwithstanding a slight increase in the crystallinity degree, especially for EVA/HFB 90/10 and 80/20. Conversely, biochar fibers enhanced the thermo-oxidative stability of the composites, which increased with increasing the biochar content. EVA/HFB composites showed higher stiffness and lower ductility than neat EVA. In addition, high concentrations of fiber biochar allowed achieving higher thermal conductivity and microwave electrical conductivity. In particular, EVA/HFB 60/40 showed a thermal conductivity higher than that of neat EVA (respectively, 0.40 vs. 0.33 W·m-1 ·K-1); the same composite exhibited an up to twenty-fold increased microwave conductivity. Finally, the combination of stiffness, enhanced thermal conductivity and intrinsic lubricating features of the filler resulted in excellent wear resistance and friction reduction in comparison with unfilled EVA.
RESUMO
A microwave technique suitable for investigating the AC magnetic susceptibility of small samples in the GHz frequency range is presented. The method-which is based on the use of a coplanar waveguide resonator, within the resonator perturbation approach-allows one to obtain the absolute value of the complex susceptibility, from which the penetration depth and the superfluid density can be determined. We report on the characterization of several iron-based superconducting systems, belonging to the 11, 122, 1144, and 12442 families. In particular, we show the effect of different kinds of doping for the 122 family, and the effect of proton irradiation in a 122 compound. Finally, the paradigmatic case of the magnetic superconductor EuP-122 is discussed, since it shows the emergence of both superconducting and ferromagnetic transitions, marked by clear features in both the real and imaginary parts of the AC susceptibility.
RESUMO
The development of responsive composite materials is among the most interesting challenges in contemporary material science and technology. Nevertheless, the use of highly expensive nanostructured fillers has slowed down the spread of these smart materials in several key productive sectors. Here, we propose a new piezoresistive PVA composite containing a cheap, conductive, waste-derived, cotton biochar. We evaluated the electromagnetic properties of the composites under both AC and DC regimes and as a function of applied pressure, showing promisingly high conductivity values by using over 20 wt.% filler loading. We also measured the conductivity of the waste cotton biochar from 20 K up to 350 K observing, for the first time, hopping charge transport in biochar materials.
RESUMO
Superconductors are strategic materials for the fabrication of magnetic shields, and within this class, MgB2 has been proven to be a very promising option. However, a successful approach to produce devices with high shielding ability also requires the availability of suitable simulation tools guiding the optimization process. In this paper, we report on a 3D numerical model based on a vector potential (A)-formulation, exploited to investigate the properties of superconducting (SC) shielding structures with cylindrical symmetry and an aspect ratio of height to diameter approaching one. To this aim, we first explored the viability of this model by solving a benchmark problem and comparing the computation outputs with those obtained with the most used approach based on the H-formulation. This comparison evidenced the full agreement of the computation outcomes as well as the much better performance of the model based on the A-formulation in terms of computation time. Relying on this result, the latter model was exploited to predict the shielding properties of open and single capped MgB2 tubes with and without the superimposition of a ferromagnetic (FM) shield. This investigation highlighted that the addition of the FM shell is very efficient in increasing the shielding factors of the SC screen when the applied magnetic field is tilted with respect to the shield axis. This effect is already significant at low tilt angles and allows compensating the strong decrease in the shielding ability that affects the short tubular SC screens when the external field is applied out of their axis.
RESUMO
We report on the microwave shielding efficiency of non-structural composites, where inclusions of biochar-a cost effective and eco-friendly material-are dispersed in matrices of interest for building construction. We directly measured the complex permittivity of raw materials and composites, in the frequency range 100 MHz-8 GHz. A proper permittivity mixing formula allows obtaining other combinations, to enlarge the case studies. From complex permittivity, finally, we calculated the shielding efficiency, showing that tailoring the content of biochar allows obtaining a desired value of electromagnetic shielding, potentially useful for different applications. This approach represents a quick preliminary evaluation tool to design composites with desired shielding properties starting from physical parameters.
RESUMO
Static (DC) and dynamic (AC, at 14 MHz and 8 GHz) magnetic susceptibilities of single crystals of a ferromagnetic superconductor, EuFe2(As1-xPx)2 (x = 0.23), were measured in pristine state and after different doses of 2.5 MeV electron or 3.5 MeV proton irradiation. The superconducting transition temperature, Tc(H), shows an extraordinarily large decrease. It starts at Tc(H=0)≈24K in the pristine sample for both AC and DC measurements, but moves to almost half of that value after moderate irradiation dose. Remarkably, after the irradiation not only Tc moves significantly below the FM transition, its values differ drastically for measurements at different frequencies, ≈16 K in AC measurements and ≈12 K in a DC regime. We attribute such a large difference in Tc to the appearance of the spontaneous internal magnetic field below the FM transition, so that the superconductivity develops directly into the mixed spontaneous vortex-antivortex state where the onset of diamagnetism is known to be frequency-dependent. We also examined the response to the applied DC magnetic fields and studied the annealing of irradiated samples, which almost completely restores the superconducting transition. Overall, our results suggest that in EuFe2(As1-xPx)2 superconductivity is affected by local-moment ferromagnetism mostly via the spontaneous internal magnetic fields induced by the FM subsystem. Another mechanism is revealed upon irradiation where magnetic defects created in ordered Eu2+ lattice act as efficient pairbreakers leading to a significant Tc reduction upon irradiation compared to other 122 compounds. On the other hand, the exchange interactions seem to be weakly screened by the superconducting phase leading to a modest increase of Tm (less than 1 K) after the irradiation drives Tc to below Tm. Our results suggest that FM and SC phases coexist microscopically in the same volume.
RESUMO
We report on ion irradiation experiments performed on compounds belonging to the [Formula: see text] family, each one involving the partial substitution of an atom of the parent compound (K for Ba, Co for Fe, and P for As), with an optimal composition to maximize the superconducting critical temperature [Formula: see text]. Employed ion beams were 3.5-MeV protons, 250-MeV Au ions, and 1.2-GeV Pb ions, but additional data from literature are also considered, thus covering a wide range of ions and energies. Microwave characterization based on the use of a coplanar waveguide resonator allowed us to investigate the irradiation-induced [Formula: see text] degradation, as well as the increase of normal state resistivity and London penetration depth. The damage was quantified in terms of displacements per atom (dpa). From this broad and comprehensive set of experimental data, clear scaling laws emerge, valid in the range of moderate irradiation-induced disorder (dpa up to 5 [Formula: see text] 10 [Formula: see text] were investigated). In these conditions, linear trends with dpa were found for all the modification rates, while a power law dependence on the ion energy was found for heavy-ion irradiation. All these scaling laws are reported and discussed throughout the paper.
RESUMO
Maximizing the sustainable supercurrent density, J C, is crucial to high-current applications of superconductivity. To achieve this, preventing dissipative motion of quantized vortices is key. Irradiation of superconductors with high-energy heavy ions can be used to create nanoscale defects that act as deep pinning potentials for vortices. This approach holds unique promise for high-current applications of iron-based superconductors because J C amplification persists to much higher radiation doses than in cuprate superconductors without significantly altering the superconducting critical temperature. However, for these compounds, virtually nothing is known about the atomic-scale interplay of the crystal damage from the high-energy ions, the superconducting order parameter, and the vortex pinning processes. We visualize the atomic-scale effects of irradiating FeSe x Te1-x with 249-MeV Au ions and find two distinct effects: compact nanometer-sized regions of crystal disruption or "columnar defects," plus a higher density of single atomic site "point" defects probably from secondary scattering. We directly show that the superconducting order is virtually annihilated within the former and suppressed by the latter. Simultaneous atomically resolved images of the columnar crystal defects, the superconductivity, and the vortex configurations then reveal how a mixed pinning landscape is created, with the strongest vortex pinning occurring at metallic core columnar defects and secondary pinning at clusters of point-like defects, followed by collective pinning at higher fields.