Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
EMBO Mol Med ; 10(9)2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30021798

RESUMO

The onset of secondary resistance represents a major limitation to long-term efficacy of target therapies in cancer patients. Thus, the identification of mechanisms mediating secondary resistance is the key to the rational design of therapeutic strategies for resistant patients. MiRNA profiling combined with RNA-Seq in MET-addicted cancer cell lines led us to identify the miR-205/ERRFI1 (ERBB receptor feedback inhibitor-1) axis as a novel mediator of resistance to MET tyrosine kinase inhibitors (TKIs). In cells resistant to MET-TKIs, epigenetically induced miR-205 expression determined the downregulation of ERRFI1 which, in turn, caused EGFR activation, sustaining resistance to MET-TKIs. Anti-miR-205 transduction reverted crizotinib resistance in vivo, while miR-205 over-expression rendered wt cells refractory to TKI treatment. Importantly, in the absence of EGFR genetic alterations, miR-205/ERRFI1-driven EGFR activation rendered MET-TKI-resistant cells sensitive to combined MET/EGFR inhibition. As a proof of concept of the clinical relevance of this new mechanism of adaptive resistance, we report that a patient with a MET-amplified lung adenocarcinoma displayed deregulation of the miR-205/ERRFI1 axis in concomitance with onset of clinical resistance to anti-MET therapy.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/farmacologia , Resistência a Medicamentos , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Transdução de Sinais , Proteínas Supressoras de Tumor/metabolismo , Crizotinibe/farmacologia , Inibidores Enzimáticos/farmacologia , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Humanos , Análise de Sequência de RNA
2.
Neoplasia ; 19(12): 1012-1021, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29136529

RESUMO

The Yes-associated protein (YAP) is a transcriptional co-activator upregulating genes that promote cell growth and inhibit apoptosis. The main dysregulation of the Hippo pathway in tumors is due to YAP overexpression, promoting epithelial to mesenchymal transition, cell transformation, and increased metastatic ability. Moreover, it has recently been shown that YAP plays a role in sustaining resistance to targeted therapies as well. In our work, we evaluated the role of YAP in acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in lung cancer. In EGFR-addicted lung cancer cell lines (HCC4006 and HCC827) rendered resistant to several EGFR inhibitors, we observed that resistance was associated to YAP activation. Indeed, YAP silencing impaired the maintenance of resistance, while YAP overexpression decreased the responsiveness to EGFR inhibitors in sensitive parental cells. In our models, we identified the AXL tyrosine kinase receptor as the main YAP downstream effector responsible for sustaining YAP-driven resistance: in fact, AXL expression was YAP dependent, and pharmacological or genetic AXL inhibition restored the sensitivity of resistant cells to the anti-EGFR drugs. Notably, YAP overactivation and AXL overexpression were identified in a lung cancer patient upon acquisition of resistance to EGFR TKIs, highlighting the clinical relevance of our in vitro results. The reported data demonstrate that YAP and its downstream target AXL play a crucial role in resistance to EGFR TKIs and suggest that a combined inhibition of EGFR and the YAP/AXL axis could be a good therapeutic option in selected NSCLC patients.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Regulação Neoplásica da Expressão Gênica , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Fatores de Transcrição/metabolismo , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Receptores ErbB/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais , Transcrição Gênica , Receptor Tirosina Quinase Axl
3.
J Hepatol ; 61(5): 1088-96, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25010260

RESUMO

BACKGROUND & AIMS: Although the growth suppressing Hippo pathway has been implicated in hepatocellular carcinoma (HCC) pathogenesis, it is unknown at which stage of hepatocarcinogenesis its dysregulation occurs. We investigated in rat and human preneoplastic lesions whether overexpression of the transcriptional co-activator Yes-associated protein (YAP) is an early event. METHODS: The experimental model used is the resistant-hepatocyte (R-H) rat model. Gene expression was determined by qRT-PCR or immunohistochemistry. Forward genetic experiments were performed in human HCC cells and in murine oval cells. RESULTS: All foci of preneoplastic hepatocytes, generated in rats 4weeks after diethylnitrosamine (DENA) treatment, displayed YAP accumulation. This was associated with down-regulation of the ß-TRCP ligase, known to mediate YAP degradation, and of microRNA-375, targeting YAP. YAP accumulation was paralleled by the up-regulation of its target genes. Increased YAP expression was also observed in human early dysplastic nodules and adenomas. Animal treatment with verteporfin (VP), which disrupts the formation of the YAP-TEAD complex, significantly reduced preneoplastic foci and oval cell proliferation. In vitro experiments confirmed that VP-mediated YAP inhibition impaired cell growth in HCC and oval cells; notably, oval cell transduction with wild type or active YAP conferred tumorigenic properties in vitro and in vivo. CONCLUSIONS: These results suggest that (i) YAP overexpression is an early event in rat and human liver tumourigenesis; (ii) it is critical for the clonal expansion of carcinogen-initiated hepatocytes and oval cells, and (iii) VP-induced disruption of the YAP-TEAD interaction may provide an important approach for the treatment of YAP-overexpressing cancers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/metabolismo , Fosfoproteínas/metabolismo , Adenoma de Células Hepáticas/tratamento farmacológico , Adenoma de Células Hepáticas/etiologia , Adenoma de Células Hepáticas/metabolismo , Adulto , Idoso , Animais , Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/genética , Carcinoma Hepatocelular/tratamento farmacológico , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Expressão Gênica , Via de Sinalização Hippo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Neoplasias Hepáticas Experimentais/etiologia , Neoplasias Hepáticas Experimentais/metabolismo , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Porfirinas/farmacologia , Lesões Pré-Cancerosas/tratamento farmacológico , Lesões Pré-Cancerosas/etiologia , Lesões Pré-Cancerosas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Ratos , Ratos Endogâmicos F344 , Transdução de Sinais , Fatores de Transcrição , Verteporfina , Proteínas de Sinalização YAP , Adulto Jovem
4.
Curr Opin Pharmacol ; 13(4): 511-8, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23797036

RESUMO

Despite the initial skepticism, targeted therapies represent a new perspective in the treatment of cancer. Tyrosine kinases, and in particular receptor tyrosine kinases (RTKs), are considered ideal targets for this type of therapy. MET, the tyrosine kinase receptor for the Hepatocyte Growth Factor (HGF), has recently become a very interesting and studied target in oncology. In this review we discuss firstly 'why' the MET/HGF pathway can be considered a target in human tumors; secondly 'where' MET/HGF inhibition can be useful in cancer treatment and finally 'how' MET and HGF can be inhibited using either monoclonal antibodies or tyrosine kinase inhibitors. We also highlight some questions in the anti-MET/HGF targeted therapy field that are still waiting for an answer.


Assuntos
Neoplasias/metabolismo , Proteínas Proto-Oncogênicas c-met/metabolismo , Antineoplásicos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores
5.
Hepatology ; 53(6): 2086-96, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21391223

RESUMO

UNLABELLED: The Hippo kinase cascade, a growth-suppressive pathway that ultimately antagonizes the transcriptional coactivator Yes-associated protein (YAP), has been shown in transgenic animals to orchestrate organ size regulation. The purpose of this study was to determine whether in non-genetically modified mice (1) the Hippo pathway is involved in the regulation of adaptive liver enlargement caused by the mitogen 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), an agonist of constitutive androstane receptor and (2) a dysregulation of this pathway occurs during the development of chemically induced hepatocellular carcinoma (HCC). We show that liver enlargement caused by TCPOBOP was associated with an increase of YAP protein levels that paralleled the increase in 2-bromodeoxyuridine incorporation. Interestingly, when a second dose of TCPOBOP was given to mice with enlarged livers, no further increases in liver mass or YAP protein levels were observed, suggesting that the Hippo pathway prevents further growth of the hyperplastic liver. Viral-mediated exogenous expression of active YAP in mouse livers was able to partially overcome the block of hepatocyte proliferation. We also show that HCCs developed in mice given diethylnitrosamine and then subjected to repeated treatments with TCPOBOP had increased levels of YAP that were associated with down-regulation of microRNA 375, which is known to control YAP expression, and with enhanced levels of alpha-fetoprotein and connective tissue growth factor, two target genes of YAP. CONCLUSION: These results suggest that the Hippo pathway regulates adaptive liver enlargement and is probably inactivated in initiated cells that escape the suppressive constrain exerted on the surrounding normal tissue, thus allowing clonal expansion to HCC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Carcinoma Hepatocelular/fisiopatologia , Hepatomegalia/fisiopatologia , Neoplasias Hepáticas/fisiopatologia , Fígado/patologia , Fosfoproteínas/fisiologia , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Proteínas de Ciclo Celular , Proliferação de Células/efeitos dos fármacos , Dietilnitrosamina/efeitos adversos , Modelos Animais de Doenças , Feminino , Hepatomegalia/induzido quimicamente , Hepatomegalia/patologia , Hiperplasia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Fígado/efeitos dos fármacos , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos , Piridinas/efeitos adversos , Piridinas/farmacologia , Proteínas de Sinalização YAP
6.
J Hepatol ; 55(5): 1069-78, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21354444

RESUMO

BACKGROUND & AIMS: Mice lacking c-jun in the liver display impaired regeneration after partial hepatectomy (PH), and were reported to be more resistant to chemically-induced hepatocellular carcinoma (HCC). We investigated the role of c-jun in normal and preneoplastic hepatocyte proliferation induced by ligands of nuclear receptors, which cause liver hyperplasia in the absence of cell loss/death. METHODS: The effect of 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP) on hepatocyte proliferation was determined in c-jun conditional knockout (c-jun(Δli)) or in mouse liver where c-jun has been silenced. To study the role of c-jun in HCC development, c-jun(Δli) and WT mice were given diethylnitrosamine (DENA) followed by repeated injections of TCPOBOP. RESULTS: Hepatocyte proliferation induced by TCPOBOP was associated with a stronger proliferative response and earlier S phase entry in c-jun(Δli) mice, compared to WT animals. Moreover, silencing of c-jun in the liver of CD-1 mice caused increased hepatocyte proliferation. A stronger hepatocyte proliferative response of c-jun(Δli) mice was observed also following treatment with a ligand of thyroid hormone receptor. Finally, loss of c-jun did not inhibit the development of HCC induced by DENA and promoted by TCPOBOP. CONCLUSIONS: (i) c-jun may, under certain conditions, negatively regulate proliferation of normal hepatocytes, (ii) c-jun is not an absolute requirement for DENA/TCPOBOP-induced HCC formation, suggesting that the therapeutic potential of c-jun/JNK inhibition in liver tumors might be impaired by an increased stimulation of cell growth due to blockade of the c-jun pathway.


Assuntos
Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Genes jun , Neoplasias Hepáticas Experimentais/genética , Piridinas/farmacologia , Tri-Iodotironina/farmacologia , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/genética , Transformação Celular Neoplásica/efeitos dos fármacos , Receptor Constitutivo de Androstano , Dietilnitrosamina , Feminino , Expressão Gênica , Inativação Gênica , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Camundongos , Camundongos Knockout , Receptores Citoplasmáticos e Nucleares/metabolismo
7.
Cancer Res ; 70(19): 7580-90, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20841479

RESUMO

The establishment of the role of MET in human cancer has led to the development of small-molecule inhibitors, many of which are currently in clinical trials. Thus far, nothing is known about their therapeutic efficacy and the possible emergence of resistance to treatment, a problem that has been often observed with other receptor tyrosine kinase (RTK) inhibitors. To predict mechanisms of acquired resistance, we generated resistant cells by treating MET-addicted cells with increasing concentrations of the MET small-molecule inhibitors PHA-665752 or JNJ38877605. Resistant cells displayed MET gene amplification, leading to increased expression and constitutive phosphorylation of MET, followed by subsequent amplification and overexpression of wild-type (wt) KRAS. Cells harboring KRAS amplification progressively lost their MET dependence and acquired KRAS dependence. Our results suggest that MET and KRAS amplification is a general mechanism of resistance to specific MET inhibitors given that similar results were observed with two small inhibitors and in different cell lines of different histotypes. To our knowledge, this is the first report showing that overexpression of wt KRAS can overcome the inhibitory effect of a RTK inhibitor. In view of the fact that cellular models of resistance to inhibitors targeting other tyrosine kinases have predicted and corroborated clinical findings, our results provide insights into strategies for preventing and/or overcoming drug resistance.


Assuntos
Genes ras , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-met/genética , Receptores de Fatores de Crescimento/antagonistas & inibidores , Receptores de Fatores de Crescimento/genética , Animais , Linhagem Celular Tumoral , Hibridização Genômica Comparativa , Resistencia a Medicamentos Antineoplásicos , Feminino , Amplificação de Genes/efeitos dos fármacos , Humanos , Hibridização in Situ Fluorescente , Indóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Camundongos Nus , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras) , Pirazóis/farmacologia , Piridazinas/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/enzimologia , Neoplasias Gástricas/genética , Sulfonas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/biossíntese , Proteínas ras/genética
8.
Mol Cancer ; 9: 121, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-20500904

RESUMO

BACKGROUND: Gastric cancer is the second leading cause of cancer mortality in the world. The receptor tyrosine kinase MET is constitutively activated in many gastric cancers and its expression is strictly required for survival of some gastric cancer cells. Thus, MET is considered a good candidate for targeted therapeutic intervention in this type of tumor, and MET inhibitors recently entered clinical trials. One of the major problems of therapies targeting tyrosine kinases is that many tumors are not responsive to treatment or eventually develop resistance to the drugs. Perspective studies are thus mandatory to identify the molecular mechanisms that could cause resistance to these therapies. RESULTS: Our in vitro and in vivo results demonstrate that, in MET-addicted gastric cancer cells, the activation of HER (Human Epidermal Receptor) family members induces resistance to MET silencing or inhibition by PHA-665752 (a selective kinase inhibitor). We provide molecular evidences highlighting the role of EGFR, HER3, and downstream signaling pathways common to MET and HER family in resistance to MET inhibitors. Moreover, we show that an in vitro generated gastric cancer cell line resistant to MET-inhibition displays overexpression of HER family members, whose activation contributes to maintenance of resistance. CONCLUSIONS: Our findings predict that gastric cancer tumors bearing constitutive activation of HER family members are poorly responsive to MET inhibition, even if this receptor is constitutively active. Moreover, the appearance of these alterations might also be responsible for the onset of resistance in initially responsive tumors.


Assuntos
Adenocarcinoma/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas Proto-Oncogênicas c-met/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Fatores de Crescimento/metabolismo , Transdução de Sinais/fisiologia , Neoplasias Gástricas/metabolismo , Adenocarcinoma/genética , Animais , Antineoplásicos/farmacologia , Western Blotting , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/genética , Receptores Proteína Tirosina Quinases/genética , Receptores de Fatores de Crescimento/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Neoplasias Gástricas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Cancer Res ; 68(24): 10128-36, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19074879

RESUMO

MicroRNAs (miRNA) are a recently identified class of noncoding, endogenous, small RNAs that regulate gene expression, mainly at the translational level. These molecules play critical roles in several biological processes, such as cell proliferation and differentiation, development, and aging. It is also known that miRNAs play a role in human cancers where they can act either as oncogenes, down-regulating tumor suppressor genes, or as onco-suppressors, targeting molecules critically involved in promotion of tumor growth. One of such molecules is the tyrosine kinase receptor for hepatocyte growth factor, encoded by the MET oncogene. The MET receptor promotes a complex biological program named "invasive growth" that results from stimulation of cell motility, invasion, and protection from apoptosis. This oncogene is deregulated in many human tumors, where its most frequent alteration is overexpression. In this work, we have identified three miRNAs (miR-34b, miR-34c, and miR-199a*) that negatively regulate MET expression. Inhibition of these endogenous miRNAs, by use of antagomiRs, resulted in increased expression of MET protein, whereas their exogenous expression in cancer cells blocked MET-induced signal transduction and the execution of the invasive growth program, both in cells expressing normal levels of MET and in cancer cells overexpressing a constitutively active MET. Moreover, we show that these same miRNAs play a role in regulating the MET-induced migratory ability of melanoma-derived primary cells. In conclusion, we have identified miRNAs that behave as oncosuppressors by negatively targeting MET and might thus provide an additional option to inhibit this oncogene in tumors displaying its deregulation.


Assuntos
MicroRNAs/genética , Neoplasias/genética , Proteínas Proto-Oncogênicas/biossíntese , Receptores de Fatores de Crescimento/biossíntese , Regiões 3' não Traduzidas , Animais , Células COS , Processos de Crescimento Celular/genética , Linhagem Celular Tumoral , Chlorocebus aethiops , Células HT29 , Humanos , MicroRNAs/biossíntese , Invasividade Neoplásica , Neoplasias/enzimologia , Neoplasias/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-met , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Fatores de Crescimento/genética , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA