Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Metastasis Rev ; 43(1): 175-195, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38233727

RESUMO

T cells, a key component of cancer immunotherapy, undergo a variety of histone modifications and DNA methylation changes since their bone marrow progenitor stages before developing into CD8+ and CD4+ T cells. These T cell types can be categorized into distinct subtypes based on their functionality and properties, such as cytotoxic T cells (Tc), helper T cells (Th), and regulatory T cells (Treg) as subtypes for CD8+ and CD4+ T cells. Among these, the CD4+ CD25+ Tregs potentially contribute to cancer development and progression by lowering T effector (Teff) cell activity under the influence of the tumor microenvironment (TME). This contributes to the development of therapeutic resistance in patients with cancer. Subsequently, these individuals become resistant to monoclonal antibody therapy as well as clinically established immunotherapies. In this review, we delineate the different epigenetic mechanisms in cancer immune response and its involvement in therapeutic resistance. Furthermore, the possibility of epi-immunotherapeutic methods based on histone deacetylase inhibitors and histone methyltransferase inhibitors are under investigation. In this review we highlight EZH2 as the principal driver of cancer cell immunoediting and an immune escape regulator. We have addressed in detail how understanding T cell epigenetic regulation might bring unique inventive strategies to overcome drug resistance and increase the efficacy of cancer immunotherapy.


Assuntos
Epigênese Genética , Neoplasias , Humanos , Imunoterapia , Neoplasias/genética , Neoplasias/terapia , Linfócitos T Reguladores , Metilação de DNA , Microambiente Tumoral/genética
3.
Heliyon ; 9(10): e20836, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37867817

RESUMO

The UK is planning to ban the sale of fuel vehicles entirely by 2035 and electric vehicles will be a potential alternative to fuel vehicles. The increase in electric vehicles will increase the charging demand. Standalone charging stations are a potential solution to alleviate the grid challenges of increased charging demand. In this work, the authors investigate a reliability analysis of a 2 MW standalone photovoltaic electric vehicle charging station (PVEVCS) using the loss of power supply probability(LPSP). The PVEVCS model consists of a PV system, a battery energy storage system (BESS) and a CS, using the climate data from Camborne, UK and classifying it into high and low irradiation sections. Next, four different charging demand profiles are selected to examine the models' LPSP. Later, the chosen charging demand profiles are optimised using various combinations of PV systems, BESS and CS. It is concluded that the different solar irradiation had a significant effect on the LPSP. Under the same combination, higher PV capacity has a more positive impact on reducing daytime LPSP, higher BESS capacity has a more significant effect on lowering nighttime LPSP and larger CS capacity has a more significant impact on declining hourly LPSP.

4.
Adv Cancer Res ; 160: 133-203, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37704287

RESUMO

Long noncoding RNAs (lncRNAs) comprise a diverse class of RNA molecules that regulate various physiological processes and have been reported to be involved in several human pathologies ranging from neurodegenerative disease to cancer. Therapeutic resistance is a major hurdle for cancer treatment. Over the past decade, several studies has emerged on the role of lncRNAs in cancer drug resistance and many trials have been conducted employing them. LncRNAs also regulate different cell death pathways thereby maintaining a fine balance of cell survival and death. Autophagy is a complex cell-killing mechanism that has both cytoprotective and cytotoxic roles. Similarly, autophagy can lead to the induction of both chemosensitization and chemoresistance in cancer cells upon therapeutic intervention. Recently the role of lncRNAs in the regulation of autophagy has also surfaced. Thus, lncRNAs can be used in cancer therapeutics to alleviate the challenges of chemoresistance by targeting the autophagosomal axis. In this chapter, we discuss about the role of lncRNAs in autophagy-mediated cancer drug resistance and its implication in targeted cancer therapy.


Assuntos
Neoplasias , Doenças Neurodegenerativas , RNA Longo não Codificante , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , RNA Longo não Codificante/genética , Autofagia , Epigênese Genética , Neoplasias/tratamento farmacológico , Neoplasias/genética
5.
Microbiome ; 11(1): 129, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291673

RESUMO

BACKGROUND: Humans emit approximately 30 million microbial cells per hour into their immediate vicinity. However, sampling of aerosolized microbial taxa (aerobiome) remains largely uncharacterized due to the complexity and limitations of sampling techniques, which are highly susceptible to low biomass and rapid sample degradation. Recently, there has been an interest in developing technology that collects naturally occurring water from the atmosphere, even within the built environment. Here, we analyze the feasibility of indoor aerosol condensation collection as a method to capture and analyze the aerobiome. METHODS: Aerosols were collected via condensation or active impingement in a laboratory setting over the course of 8 h. Microbial DNA was extracted from collected samples and sequenced (16S rRNA) to analyze microbial diversity and community composition. Dimensional reduction and multivariate statistics were employed to identify significant (p < 0.05) differences in relative abundances of specific microbial taxa observed between the two sampling platforms. RESULTS: Aerosol condensation capture is highly efficient with a yield greater than 95% when compared to expected values. Compared to air impingement, aerosol condensation showed no significant difference (ANOVA, p > 0.05) in microbial diversity. Among identified taxa, Streptophyta and Pseudomonadales comprised approximately 70% of the microbial community composition. CONCLUSION: The results suggest that condensation of atmospheric humidity is a suitable method for the capture of airborne microbial taxa reflected by microbial community similarity between devices. Future investigation of aerosol condensation may provide insight into the efficacy and viability of this new tool to investigate airborne microorganisms. IMPORTANCE: On average, humans shed approximately 30 million microbial cells each hour into their immediate environment making humans the primary contributor to shaping the microbiome found within the built environment. In addition, recent events have highlighted the importance of understanding how microorganisms within the built environment are aerosolized and dispersed, but more importantly, the lack in development of technology that is capable of actively sampling the ever-changing aerosolized microbiome, i.e., aerobiome. This research highlights the capability of sampling the aerobiome by taking advantage of naturally occurring atmospheric humidity. Our novel approach reproduces the biological content in the atmosphere and can provide insight into the environmental microbiology of indoor spaces. Video Abstract.


Assuntos
Microbiota , Humanos , RNA Ribossômico 16S/genética , Estudos de Viabilidade , Microbiologia Ambiental , Aerossóis , Microbiologia do Ar
6.
Environ Dev Sustain ; 25(7): 5755-5796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35437423

RESUMO

In Nigeria, the rapid population increase and the overreliance on fossil fuel have created significant environmental, health, political, and economic consequences leading to severe socio-economic drawbacks. These factors have developed a wide gap between energy demand and supply due to insufficient local production, necessitating a clean energy supply for all. The photovoltaic device's economic and environmental merits have made it the most suitable clean energy alternative to help developing countries such as Nigeria achieve the SDG-7. However, apart from the device's low efficiency, which is undergoing intensive study globally, other factors affect the penetration of the technology in developing countries, particularly Nigeria. This report systematically reviews the literature on the country's energy crisis and renewable energy potential, leading to an overview of solar energy potential and penetration. The potential of the technology and its penetration in the country were provided. A list highlighting challenges hindering technology penetration was also provided, and a solution for each was recommended.

7.
Eur Phys J E Soft Matter ; 45(12): 98, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36520319

RESUMO

Two dimeric smectic molecules, namely α-ω-bis (4-n-pentylanilinebenzylidene-4'-oxy) butane (PABO4) and α-ω-bis (4-n-pentylanilinebenzylidene-4'-oxy) pentane (PABO5), have been considered for sensing UV light. The compounds' optimization process has been performed through B3LYP hybrid functional together with basis set 6-31+G (d) using the input parameters from the crystallographer. The absorption of UV analysis of these compounds has been estimated, and the configuration interaction single-level method has been used to analyse the electronic transition features coupled with the calculation of excited states using semi-empirical Hamiltonian ZINDO. The CNDO/S, INDO/S together with CI approaches, has been utilized for comparative evaluation. The spectral-associated parameters have been summarized. The molecules discussed in this manuscript present several features, viz. the absorption range of the molecules that is sensitive to different wavelengths, the usage in flexible devices, offering the prospect for UV sensors. Further, the switching applications have been explored based on the oscillator strength data in various regions of wavelengths.


Assuntos
Cristais Líquidos , Raios Ultravioleta , Polímeros
8.
Nanomaterials (Basel) ; 12(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36234393

RESUMO

The rapidly increasing demand for energy storage has been consistently driving the exploration of different materials for Li-ion batteries, where the olivine lithium-metal phosphates (LiMPO4) are considered one of the most potential candidates for cathode-electrode design. In this context, the work presents an extensive comparative theoretical study of the electrochemical and electrical properties of iron (Fe)-, cobalt (Co)-, manganese (Mn)-, chromium (Cr)-, and vanadium (V)-based LiMPO4 materials for cathode design in lithium (Li)-ion battery applications, using the density-functional-theory (DFT)-based first-principle-calculation approach. The work emphasized different material and performance aspects of the cathode design, including the cohesive energy of the material, Li-intercalation energy in olivine structure, and intrinsic diffusion coefficient across the Li channel, as well as equilibrium potential and open-circuit potential at different charge-states of Li-ion batteries. The results indicate the specification of the metal atom significantly influences the Li diffusion across the olivine structure and the overall energetics of different LiMPO4. In this context, a clear correlation between the structural and electrochemical properties has been demonstrated in different LiMPO4. The key findings offer significant theoretical and design-level insight for estimating the performance of studied LiMPO4-based Li-ion batteries while interfacing with different application areas.

9.
Chem Rev ; 122(22): 16752-16801, 2022 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-36195098

RESUMO

Effective manipulation of liquids on open surfaces without external energy input is indispensable for the advancement of point-of-care diagnostic devices. Open-surface microfluidics has the potential to benefit health care, especially in the developing world. This review highlights the prospects for harnessing capillary forces on surface-microfluidic platforms, chiefly by inducing smooth gradients or sharp steps of wettability on substrates, to elicit passive liquid transport and higher-order fluidic manipulations without off-the-chip energy sources. A broad spectrum of the recent progress in the emerging field of passive surface microfluidics is highlighted, and its promise for developing facile, low-cost, easy-to-operate microfluidic devices is discussed in light of recent applications, not only in the domain of biomedical microfluidics but also in the general areas of energy and water conservation.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica , Molhabilidade , Sistemas Automatizados de Assistência Junto ao Leito
10.
Micromachines (Basel) ; 13(8)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-36014199

RESUMO

The objective of the present work is to carry out analytical and finite element analysis for commonly used coating materials for micro-milling applications on high-speed steel substrate and evaluate the effects of different parameters. Four different coating materials were selected for micro-milling applications: titanium nitride (TiN), diamond-like carbon (DLC), aluminium titanium nitride (AlTiN) and titanium silicon nitride (TiSiN). A 3D finite element model of coating and substrate assembly was developed in Abaqus to find the Hertzian normal stress when subjected to normal load of 4 N, applied with the help of a rigid ball. The radius of the rigid ball was 200 µm. For all the coating materials, the length was 3 mm, the width was 1 mm, and the thickness was 3 µm. For the high-speed steel substrate, the length was 3 mm, the width was 1 mm, and the thickness was 50 µm. Along the length and width, coating and substrate both were divided into 26 equal parts. The deformation behaviour of all the coating materials was considered as linear-elastic and that of the substrate was characterized as elastic-plastic. The maximum normal stress developed in the FEA model was 12,109 MPa. The variation of the FEA result from the analytical result (i.e., 12,435.97 MPa is 2.63%) which is acceptable. This confirms that the FEA model of coating-substrate assembly is acceptable. The results shows that the TiSiN coating shows least plastic equivalent strain in the substrate, which serves the purpose of protecting the substrate from plastic deformation and the TiSiN of 3 micron thickness is the most optimum coating thickness for micro-milling applications.

11.
ACS Omega ; 7(32): 28396-28407, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35990474

RESUMO

Green hydrogen production is one of the most desirable sustainable goals of the United Nations. Thus, for that purpose, we developed hematite (α-Fe2O3), an n-type semiconductor, a desirable candidate for photoelectrochemical (PEC) water splitting, enabling hydrogen evolution. High recombination losses, low efficiency, and large-scale production hinder its potential. To address these issues, we have fabricated optimized bare and cadmium oxide (CdO)-decorated hematite thin film nanorod arrays using a throughput radio frequency (RF) sputtering with efficient water splitting behavior. To the best of our knowledge, no work has been done so far on the synthesis of CdO/α-Fe2O3 via RF sputtering for PEC application. Bare α-Fe2O3 samples, with a morphology of vertically aligned nanorods, were fabricated with optimized parameters such as as-deposited 70 nm of Fe, an angle of deposition of 70°, and an annealing temperature of 600 °C, which showed a photocurrent density of 0.38 mA/cm2 at 1.65 V vs reversible hydrogen electrode (RHE). Characterizations depicted that this unique morphology with high crystallinity directly enhanced the performance of hematite photoanodes. Further, deposition of 30 nm of cadmium (CdO) on the α-Fe2O3 nanorods produced a corn-like morphology with CdO nanoparticles (∼2 nm), resulting in 4-times enhancement of the PEC performance (1.2 mA/cm2 at 1.65 V vs RHE). CdO acted as a co-catalyst, responsible for satisfactory suppression of recombination and facilitating the hole transfer, directly enhancing the overall photocurrent density. This photoanode showed an extremely stable behavior over a period of 26 h when kept under constant illumination. Furthermore, the CdO-modified photoanode showed a better dye degradation (98% in 40 min) than the bare hematite (60% in 40 min), proving to be an efficient photoanode.

12.
Materials (Basel) ; 15(14)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35888401

RESUMO

To attain a comfortable building interior, building windows play a crucial role. Because of the transparent nature of the window, it allows heat loss and gain and daylight. Thus, they are one of the most crucial parts of the building envelope that have a significant contribution to the overall building energy consumption. The presence of dust particles on a window can change the entering light spectrum and creates viewing issues. Thus, self-cleaning glazing is now one of the most interesting research topics. However, aside from the self-cleaning properties, there are other properties that are nominated as glazing factors and are imperative for considering self-cleaning glazing materials. In this work, for the first time, Hf-doped ZnO was investigated as self-cleaning glazing and its glazing factors were evaluated. These outcomes show that the various percentages of ZnO doping with Hf improved the glazing factors, making it a suitable glazing candidate for the cold-dominated climate.

13.
ACS Sustain Chem Eng ; 10(20): 6609-6621, 2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35634267

RESUMO

The thermal performance of window glazing requires improvement for a sustainable built environment at an acceptable cost. The current work demonstrates a multifold smart composite consisting of an optimized In2O3/ZnO-polymethyl methacrylate-paraffin composite to reduce heat exchange through the combined self-cleaning and energy-saving envelope of the smart built environment. This work has attempted to develop a smart composite coating that combines photosensitive metal oxide and phase change materials and investigate their thermal comfort performance as a glazed window. It is observed that the In2O3/ZnO (5 wt %) multifold composite film experienced better transmittance and thermal performance compared to its other wt % composite samples. Moreover, the multifold composite-coated glass integrated into a prototype glazed window was further investigated for its thermal performance, where a steady average indoor temperature of ∼30 °C was achieved when the outside temperature reached ∼55 °C, while maintaining good visibility. Interestingly, the transparency reached ∼86% at 60 °C and exhibited a hydrophobic water contact angle (WCA) of ∼138°. In contrast, a similar film exhibits ∼64% transparency at 22 °C, where the WCA becomes moderately hydrophilic (∼68°). Temperature dependency on transparency and wettability properties was examined for up to 60 cycles, resulting in excellent indoor thermal comfort. In addition, a thermal simulation study was executed for the smart multifold glazing composite. Moreover, this study offers dynamic glazing development options for energy saving in the smart built environment.

14.
Ind Eng Chem Res ; 61(17): 5885-5897, 2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35571515

RESUMO

Substitutional doping and different nanostructures of ZnO have rendered it an effective sensor for the detection of volatile organic compounds in real-time atmosphere. However, the low selectivity of ZnO sensors limits their applications. Herein, hafnium (Hf)-doped ZnO (Hf-ZnO) nanostructures are developed by the hydrothermal method for high selectivity of hazardous NOX gas in the atmosphere, substantially portraying the role of doping concentration on the enhancement of structural, optical, and sensing behavior. ZnO microspheres with 5% Hf doping showed excellent sensing and detected 22 parts per billion (ppb) NOX gas in the atmosphere, within 24 s, which is much faster than ZnO (90 s), and rendered superior sensing ability (S = 67) at a low temperature (100 °C) compared to ZnO (S = 40). The sensor revealed exceptional stability under humid air (S = 55 at 70% RH), suggesting a potential of 5% Hf-ZnO as a new stable sensing material. Density functional theory (DFT) and other characterization analyses revealed that the high sensing activity of 5% Hf-ZnO is attributed to the accessibility of more adsorption sites arising due to charge distortion, increased oxygen vacancies concentration, Lewis acid base, porous morphology, small particle size (5 nm), and strong bond interaction amidst NO2 molecule with ZnO-Hf-Ovacancy sites, resulting from the substitution of the host cation (Zn2+) with doping cation (Hf4+).

15.
Materials (Basel) ; 16(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36614680

RESUMO

The main objective of this article is to perform the turning operation on an EN36B steel work-billet with a tungsten carbide tool, to study the optimal cutting parameters and carry out an analysis of flank-wear. Experimental and simulation-based research methodology was opted in this study. Experimental results were obtained from the lab setup, and optimisation of parameters was performed using RSM (response surface methodology). Using RSM, cutting-tool flank-wear was optimised, and the cutting parameters which affect the flank wear were determined. In results main effect plot, contour plot, the surface plot for flank-wear and forces (Fx, Fy and Fz) were successfully obtained. It was concluded that tool flank-wear is affected by depth of cut, and that flank-wear generally increases linearly with increasing cutting-speed, depth of cut and feed-rate. To validate the obtained results, predicated and measured values were plotted and were in very close agreement, having an accuracy level of 96.33% to 98.92%.

16.
J Hazard Mater ; 420: 126554, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34252676

RESUMO

3D porous, thin sheet-like rGO aerogel was fabricated to explore its antimony (Sb) removal potential from wastewater. Langmuir isothermal and pseudo-second-order kinetic model best-suited the adsorption process. The maximum adsorption capacities were 168.59 and 206.72 mg/g for Sb (III and V) at pH 6.0 respectively. The thermodynamic parameters designated the process to be thermodynamically spontaneous, endothermic reaction, a result of dissociative chemisorption. The rGO aerogel bestowed good selectively among competing ions and reusability with 95% efficiency. rGO posed excellent practicability with Sb-spiked tap water and fixed-bed column experiments showing 97.6% of Sb (III) (3.6 µg/L) and 96.8% of Sb (V) (4.7 µg/L) removal from tap water and from fixed column bed experiments breakthrough volumes (BV) for the Sb (III) and Sb (V) ions were noted to be 540 BV and 925 BV respectively, until 5 ppb, which are below the requirement of MCL for Sb in drinking water (6 µg/L). XPS and DFT analyses explained adsorption mechanism and depicted a higher affinity of Sb (V) towards rGO surface than Sb (III).


Assuntos
Grafite , Poluentes Químicos da Água , Adsorção , Antimônio , Águas Residuárias
17.
ACS Appl Mater Interfaces ; 13(21): 25540-25552, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34024103

RESUMO

Herein, we successfully synthesized high-quality Hf-ZnO thin films with various Hf contents (0, 3, 6, 9, 12, and 15 at. %), which showed both superhydrophilic (6% Hf-ZnO) and ultrahydrophobic (15% Hf-ZnO) wetting behavior. Different characterization methods were opted to recognize the structural (XRD, SEM, AFM) and defect properties (XPS) of the pristine and doped materials, to understand the mechanisms underlying the tuning of wetting behavior (contact angle). Hafnium doping plays a noteworthy role in tuning the morphology of the ZnO nanostructures, roughness of the material surface, generation of defects, Lewis acid-base interactions, and wettability properties. We achieved a superhydrophilic surface with 6% Hf-ZnO owing to a smooth surface, less basicity, and maximum concentration of oxygen vacancies, and also an ultrahydrophobic surface with 15% Hf-ZnO because of the rough surface, high basicity, and minimum concentration of oxygen vacancies. The as prepared Hf-ZnO samples showed stable performance (stability, wearability, weatherability, and antifouling) under real-life conditions marking them multifunctional and biosafe material to be effectively used in solar and building's window. A wetting mechanism was established to relate the wetting behavior of the samples to oxygen vacancies (active sites for water dissociation: resulted due to charge mismatch of host cation (Zn2+) by the doped cation (Hf4+)), roughness (smooth surface (Wenzel) with minimum Rrms (0.588) portraying hydrophilic property and rough caltropic surface (Cassie-Baxter) with maximum Rrms (2.522) portraying hydrophobic property), basicity (H2O: Lewis Base; ZnO: Lewis acid; HfO2: Lewis base) and morphology (tube-like structure (0-6% Hf-ZnO) and caltrop-like structure (12-15% Hf-ZnO)).

18.
Environ Sci Pollut Res Int ; 28(18): 22310-22333, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33754265

RESUMO

Among the different kinds of renewable energy sources, solar energy plays a major role because it is safe and inexpensive at all times. Several techniques are developed for steam and electricity generation by solar energy, in which the parabolic trough collector is an advantageous method for generating steam and electricity. Different types of collectors for various temperatures, in which PTCs are used to produce medium temperature ranges using the readily available solar energy, were developed, produced, and tests. Many theoretical and experimental studies have been carried out to improvise parabolic trough collectors' optical and thermal characteristics. The modifications are reviewed in this paper to enhance the design modification, optical and thermal properties utilized in the collector. This analysis paper also elucidates the use of PTC desalination, various integrated parabolic trough collector methods for power generation, and the economic aspects of parabolic trough collector.


Assuntos
Energia Solar , Eletricidade , Luz Solar , Temperatura
19.
Phys Rev E ; 104(6-1): 064112, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35030865

RESUMO

In this paper, we formulate and study the quantum counterpart of the energy equipartition theorem for a charged quantum particle moving in a harmonic potential in the presence of a uniform external magnetic field and linearly coupled to a passive quantum heat bath through coordinate variables. The bath is modeled as a collection of independent quantum harmonic oscillators. We derive closed form expressions for the mean kinetic and potential energies of the charged dissipative magneto-oscillator in the forms E_{k}=〈E_{k}〉 and E_{p}=〈E_{p}〉, respectively, where E_{k} and E_{p} denote the average kinetic and potential energies of individual thermostat oscillators. The net averaging is twofold; the first one is over the Gibbs canonical state for the thermostat, giving E_{k} and E_{p}, and the second one, denoted by 〈·ã€‰, is over the frequencies ω of the bath oscillators which contribute to E_{k} and E_{p} according to probability distributions P_{k}(ω) and P_{p}(ω), respectively. The relationship of the present quantum version of the equipartition theorem with that of the fluctuation-dissipation theorem (within the linear-response theory framework) is also explored. Further, we investigate the influence of the external magnetic field and the effect of different dissipation processes through Gaussian decay and Drude and radiation bath spectral density functions on the typical properties of P_{k}(ω) and P_{p}(ω). Finally, the role of system-bath coupling strength and the memory effect is analyzed in the context of average kinetic and potential energies of the dissipative charged magneto-oscillator.

20.
J Clean Prod ; 312: 127705, 2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36471816

RESUMO

The United Nation's Sustainable Development Goals (SDGs) want to have a peaceful world where human life will be in a safe, healthy, sustainable environment without any inequalities. However, the year 2020 experienced a global pandemic due to COVID-19. This COVID-19 created an adverse impact on human life, economic, environment, and energy and transport sector compared to the pre-COVID-19 scenario. These above-mentioned sectors are interrelated and thus lockdown strategy and stay at home rules to reduce the COVID-19 transmission had a drastic effect on them. With lockdown, all industry and transport sectors were closed, energy demand reduced greatly but the time shift of energy demand had a critical impact on grid and energy generation. Decreased energy demand caused a silver lining with an improved environment. However, drowned economy creating a negative impact on the human mind and financial condition, which at times led to life-ending decisions. Transport sector which faced a financial dip last year trying to coming out from the losses which are not feasible without government aid and a new customer-friendly policy. Sustainable transport and the electric vehicle should take high gear. While people are staying at home or using work from home scheme, building indoor environment must specially be taken care of as a compromised indoor environment affects and increases the risk of many diseases. Also, the energy-efficient building will play a key role to abate the enhanced building energy demand and more generation from renewable sources should be in priority. It is still too early to predict any forecast about the regain period of all those sectors but with vaccination now being introduced and implemented but still, it can be considered as an ongoing process as its final results are yet to be seen. As of now, COVID-19 still continue to grow in certain areas causing anxiety and destruction. With all these causes, effects, and restoration plans, still SDGs will be suffered in great order to attain their target by 2030 and collaborative support from all countries can only help in this time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA