Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Oleo Sci ; 73(4): 547-562, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556288

RESUMO

Physicochemical investigations on the inclusion of anionic polyamidoaminesuccinamic acid dendrimer, generation 5 (PAMAM-SA, G5) with positively charged hybrid vesicles (HCV), prepared using soylecithin, ion pair amphiphile (IPA), cholesterol and dihexadecyldimethylammonium bromide, were investigated by dynamic light scattering, transmission electron/atomic force microscopy (TEM/AFM), differential scanning calorimetry, fluorescence spectroscopy and surface pressure-time isotherm studies. Adsorption of dendrimer onto vesicle surface and subsequent bilayer disruption strongly depends on the bilayer composition and dendrimer concentration. Change in the zeta potential value with increasing dendrimer concentration suggests the dendrimer-vesicle interaction to be electrostatic in nature. AFM studies also confirm the adsorption of dendrimer as well as hole formation in the bilayer. Impact of the inclusion of dendrimer into the bilayer were further investigated through differential scanning calorimetry by monitoring the chain melting temperature and enthalpy of the chain melting processes. Dendrimer at low concentration does not alter bilayer integrity, while hole formations are noted at higher dendrimer concentration. Fluorescence anisotropy studies confirm the adsorption and subsequent bilayer disruption due to dendrimer inclusion. Dendrimer induced vesicle disintegration kinetics conclusively illustrate the transformation of cationic bilayer to monolayer and thereby exposing the role of IPA. In vitro cytotoxicity studies on PAMAM-SA, G5 and HCVs mixtures against human breast cancer cell line suggest that dendrimer-liposome aggregates (dendriosomes) exhibit substantial anticancer activities with insignificant side effects. It is expected that the dendriosomes may have application to host and deliver anticancer drug in the field of targeted drug delivery.


Assuntos
Dendrímeros , Humanos , Dendrímeros/química , Bicamadas Lipídicas/química , Lipossomos , Sistemas de Liberação de Medicamentos , Adsorção
2.
Chem Phys Lipids ; 258: 105364, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040405

RESUMO

Interactions between a zwitterionic phospholipid, 1, 2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and four anionic phospholipids dihexadecyl phosphate (DHP), 1, 2-dimyristoyl-sn-glycero-3-phosphoglycerol (DMPG), 1, 2-dipalmitoyl-sn-glycero-3-phosphate (DPP) and 1, 2-dipalmitoyl-sn-glycero-3-phospho ethanol (DPPEth) in combination with an additional amount of 30 mol% cholesterol were separately investigated at air-buffer interface through surface pressure (π) - area (A) measurements. π-A isotherm derived parameters revealed maximum negative deviation from ideality for the mixtures comprising 30 mol% anionic lipids. Besides the film functionality, structural changes of the monomolecular films at different surface pressures in the absence and presence of polyamidoamine (PAMAM, generation 4), a cationic dendrimer, were visualised through Brewster angle microscopy and fluorescence microscopic studies. Fluidity/rigidity of monolayers were assessed by surface dilatational rheology studies. Effect of PAMAM on the formation of adsorbed monolayer, due to bilayer disintegration of liposomes (DPPC:anionic lipids= 7:3 M/M, and 30 mol% cholesterol) were monitored by surface pressure (π) - time (t) isotherms. Bilayer disintegration kinetics were dependent on lipid head group and chain length, besides dendrimer concentration. Such studies are considered to be an in vitro cell membrane model where the alteration of molecular orientation play important roles in understanding the nature of interaction between the dendrimer and cell membrane. Liposome-dendrimer aggregates were nontoxic to breast cancer cell line as well as in doxorubicin treated MDA-MB-468 cell line suggesting their potential as drug delivery systems.


Assuntos
Dendrímeros , Fosfolipídeos/química , Lipossomos/química , 1,2-Dipalmitoilfosfatidilcolina/química , Microscopia de Fluorescência , Colesterol/química , Propriedades de Superfície
3.
BMC Complement Med Ther ; 22(1): 42, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35152903

RESUMO

BACKGROUND: Antibiotic resistances of pathogens and breast cancer warrant the search for new alternative strategies. Phytoextracts can eradicate microbe-borne diseases as well as cancer with lower side effects compared to conventional antibiotics. AIM: Unripe and ripe Azadirachta indica (neem) seed extracts were explored as potential antibiofilm and anticancer agents in combating multidrug-resistant infectious bacteria as well as anticancer agents against the MDR breast cancer cell lines. METHODS: Shed-dried neem seeds (both unripe and ripe) were pulverized and extracted using methanol. The chemical components were identified with FTIR and gas chromatography - mass spectrometry. Antibiofilm activity of neem seed extracts were assessed in terms of minimum biofilm inhibitory concentration (MBIC), minimum biofilm eradication concentration (MBEC), and fluorescence microscopic studies on Staphylococcus aureus and Vibrio cholerae. Bacterial cells were studied by fluorescence microscopy using acridine orange/ethidium bromide as the staining agents. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were evaluated to observe the antibacterial activities. Cytotoxicity of the extracts against human blood lymphocytes and the anticancer activity against drug-resistant breast cancer cell lines were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and fluorescence-activated cell sorting (FACS) studies. RESULTS: 4-Ethyl-2-hydroxy-2-cyclopentene-1-one, phthalic acid, and 2-hexyl-tetrahydro thiophane were the major compounds in unripe neem seed, whereas 3,5-dihydroxy-6-methyl-2,3-dihydro-4-H-pyran-4-one and 4-ethylbenzamide were predominant in ripe neem seed. Triazine derivatives were also common for both the extracts. MBIC values of unripe and ripe neem seed extracts for S. aureus are 75 and 100 µg/mL, respectively, and for V. cholerae, they are 100 and 300 µg/mL, respectively. MBEC values of unripe and ripe seed extracts are 500 and 300 µg/mL, respectively for S. aureus and for V. cholerae the values are 700 and 500 µg/mL, respectively. Fluorescence microscopic studies at 16 and 24 h, after bacterial culture, demonstrate enhanced antibiofilm activity for the ripe seed extract than that of the unripe seeds for both the bacteria. MTT assay reveals lower cytotoxicity of both the extracts towards normal blood lymphocytes, and anticancer activity against breast cancer cell line (MDA-MB-231) with superior activity of ripe seed extract. FACS studies further supported higher anticancer activity for ripe seed extract. CONCLUSIONS: Methanolic extract of neem seeds could substantially inhibit and eradicate biofilm along with their potent antibacterial and anticancer activities. Both the extracts showed higher antibiofilm and antibacterial activity against S. aureus (gram-positive) than V. cholerae (gram-negative). Moreover, ripe seed extract showed higher antibiofilm and anticancer activity than unripe extracts.


Assuntos
Azadirachta , Biofilmes , Humanos , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia , Staphylococcus aureus
4.
Sci Rep ; 11(1): 15527, 2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34330954

RESUMO

Dicarboxylic amino acid-based surfactants (N-dodecyl derivatives of -aminomalonate, -aspartate, and -glutamate) in combination with hexadecyltrimethylammonium bromide (HTAB) form a variety of aggregates. Composition and concentration-dependent mixtures exhibit liquid crystal, gel, precipitate, and clear isotropic phases. Liquid crystalline patterns, formed by surfactant mixtures, were identified by polarizing optical microscopy. FE-SEM studies reveal the existence of surface morphologies of different mixed aggregates. Phase transition and associated weight loss were found to depend on the composition where thermotropic behaviours were revealed through combined differential scanning calorimetry and thermogravimetric studies. Systems comprising more than 60 mol% HTAB demonstrate shear-thinning behaviour. Gels cause insignificant toxicity to human peripheral lymphocytes and irritation to bare mouse skin; they do not display the symptoms of cutaneous irritation, neutrophilic invasion, and inflammation (erythema, edema, and skin thinning) as evidenced by cumulative irritancy index score. Gels also exhibit substantial antibacterial effects on Staphylococcus aureus, a potent causative agent of skin and soft tissue infections, suggesting its possible application as a vehicle for topical dermatological drug delivery.

5.
Biofouling ; 36(8): 1000-1017, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-33172298

RESUMO

Benzyl isocyanate (BIC), from methanol extract of Psidium guajava leaves, exhibited substantial anti-biofilm activities against Staphylococcus aureus, the common bacterial pathogen in nosocomial infections. Major components of the extract included eugenol, BIC, phenyl-2-methoxy-4-(1-propenyl)-acetate and 2,5-pyrrolidinedione,1-penta-3-4-dienyl, analyzed by GC-MS and HPLC studies. BIC exhibited substantial anti-biofilm activitiy against S. aureus, established by assaying biofilm formation, biofilm metabolic activity, bacterial adherence to hydrocarbons, exopolysaccharide formation, and optical and scanning electron microscopic studies. BIC significantly downregulated the important biofilm markers of S. aureus, viz., icaAD, sarA and agr, observed by quantitative real time polymerase chain reaction analysis. Molecular docking studies revealed thermodynamically favorable interaction of BIC with IcaA, SarA and Agr, having Gibbs energy values of -8.45, -9.09 and -10.29 kcal mol-1, respectively. BIC after binding to IcaR, the repressor of IcaA, influences its binding to target DNA site (Eshape, -157.27 kcal mol-1). The results are considered to demonstrate anti-biofilm potential of BIC against bacterial infections.


Assuntos
Psidium , Staphylococcus aureus , Antibacterianos/farmacologia , Proteínas de Bactérias , Biofilmes , Isocianatos , Simulação de Acoplamento Molecular , Folhas de Planta
6.
Heliyon ; 6(2): e03456, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32140584

RESUMO

Arjunolic acid (AA) a plant derived pentacyclic triterpenoid which showed effective anticancer activity against MCF-7 and HeLa cells as well as no significant toxic effect was observed against normal lymphocytes. In the current study the self assemble property of arjunolic acid gives an extra emphasis on anticancer activity which was proved by several fluorescence studies like ROS generation, EtBr/AO and DAPI staining. At a selected dose of 50µg/ml AA disrupt the redox balance inside the cancer cells by producing reactive oxygen species. The apoptotic event was mediated by two key regulator proteins TNF-α and NF-κß which was proved here. The increment of the pro-inflammatory cytokines indicates the ROS mediated pathway of cancer cell apoptosis.

7.
Vaccine ; 37(45): 6842-6856, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31543416

RESUMO

BACKGROUND: Group-A human rotaviruses (GARV) are among the major cause of childhood diarrhea worldwide. In lieu of monitoring the circulatory GARV strains and underscoring the burden of GARV related hospitalization, a systematic surveillance was conducted in three hospitals of eastern India. In this hospital-based diarrheal disease surveillance (2014-2016), GARV was the most common cause of acute infantile gastroenteritis. The strains were genotyped and characterized to understand their prevalence and phylodynamics prior to the introduction of vaccine in eastern India. MATERIALS AND METHODS: A total of 3652 stool samples were screened from children (≤5 years) hospitalized with acute diarrhea during 2014-2016. Initial screening for VP6 antigen was done by ELISA. GARV positive samples were genotyped by multiplex semi-nested PCR and DNA sequencing and phylogenetic analyses were based on the capsid proteins VP4 and VP7. RESULTS: Of 3652 samples, 1817 (49.8%) were GARV positive. G1, G2, G3 and G9 in conjunction with P[4], P[6]and P[8]genotypes were seen to co-circulate in the population. A sharp deflection from G1 to G3 occurred since 2016; upsurge of G9 strains was seen in alternate years, whereas G2 strains had a low frequency. All the circulating genotypes depicted a low phylogenetic relatedness to the vaccine strains. Differences in antigenic epitopes of VP4 and VP7 proteins in local strains were seen when compared to the vaccine strains. A significant difference in the degree of dehydration, duration of mean hospital stay and frequency of vomiting/24 h between GARV positive and negative children was evident. CONCLUSION: The study provides a relevant set of base-line data on high burden of rotaviral gastroenteritis and the varied genotypic diversity among children prior to the introduction of GARV vaccine in this endemic region. Continuous monitoring during post-vaccination era will be required to assess the impact of vaccination in this region.


Assuntos
Infecções por Rotavirus/virologia , Rotavirus/classificação , Rotavirus/genética , Criança , Pré-Escolar , Diarreia/prevenção & controle , Diarreia/virologia , Feminino , Gastroenterite/prevenção & controle , Gastroenterite/virologia , Deriva Genética , Genótipo , Humanos , Índia , Lactente , Masculino , Filogenia , Rotavirus/patogenicidade , Análise de Sequência de DNA
8.
Biomed Pharmacother ; 111: 1302-1314, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30841444

RESUMO

INTRODUCTION: Garlic has been reported to stimulate nitric-oxide (NO) synthesis in various cells. The role of aqueous-extract of garlic (AEG) and a purified NO-generating protein from garlic (NGPG) was investigated to control hyperglycemia by hepatic insulin synthesis through NGPG induced synthesis of NO via glucose-activated NO-synthase and glucose transporter-4 (Glut-4) in the hepatocytes. METHODS: Type-1-diabetic mellitus mice were prepared by alloxan treatment, NO was determined by methemoglobin method, insulin synthesis was quantitated by ELISA. TNF-α and NFκß was quantitated by ELISA. The AEG-induced Glut-4 synthesis was determined by in-vitro translation of mRNA from the hepatocytes. The NO-generating protein from AEG was purified to homogeneity by chromatography on DEAE-cellulose and Sephadex G-50 columns and sequenced/characterized by Mass-spectral-analysis. RESULTS: Purified NGPG injection to diabetic mice significantly reduced the blood-sugar and increase insulin level in diabetic animal. It also increases insulin-release, Glut-4 synthesis, glucose-uptake in both liver and ß-cells of diabetic mice. NGPG down regulated pro-inflammatory cytokine TNF-α and the stress responsive NFκB-expression in liver cell of diabetic mice. Injection of AEG to the diabetic mice reduced the blood glucose level from 550 ± 10 mg/dL to 125 ± 10 mg/dL in 16 h with simultaneous increase of plasma NO from 0 nmol/h to 2.5 nmol/h and insulin 2 ± 1.1µunit/mL to 15µunit/mL at 16 h. Oral administration of AEG to adult diabetic mice increased NO, insulin and Glut-4 synthesis in the hepatocytes. CONCLUSION: AEG and the purified-NGPG protein can control hyperglycemia through the stimulation of NO by glucose-activated NO-synthase that would play an important role in the synthesis of insulin/Glut-4 in liver-cells.


Assuntos
Diabetes Mellitus Experimental/tratamento farmacológico , Alho/química , Transportador de Glucose Tipo 4/metabolismo , Hipoglicemiantes/farmacologia , Insulina/metabolismo , Fígado/efeitos dos fármacos , Óxido Nítrico/metabolismo , Aloxano/farmacologia , Animais , Glicemia/efeitos dos fármacos , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Fígado/metabolismo , Camundongos , Extratos Vegetais/farmacologia
9.
Microb Ecol ; 77(3): 616-630, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30218129

RESUMO

Vibrio cholerae, the Gram-negative bacterium causing lethal diarrheal disease cholera, forms biofilm on solid surfaces to gain adaptive advantage for successful survival in aquatic reservoirs. Expression of exopolysaccharide (EPS), an extracellular matrix material, has been found critical for biofilm-based environmental persistence. In a subset of epidemic-causing V. cholerae, absence of flagellum but not motility was identified to induce elevated exopolysaccharide expression. Identification of the role played by quorum sensing autoinducer molecules, i.e., cholera autoinducer 1 (CAI-1) and autoinducer 2 (AI-2) as well as central regulator LuxO on EPS expression in the subset was explored. Deletion mutations were introduced in vital genes responsible for synthesizing CAI-1 (cqsA), AI-2 (luxS), flagellum (flaA), LuxO (luxO), flagellar motor (motX), and VpsR (vpsR) in the model strain MO10. Subsequent phenotypic alterations in terms of colony morphology, EPS expression, biofilm formation, and transcription level of relevant genes were analyzed. Autoinducer cross-feeding experiment confirmed the role of autoinducers in EPS signaling. Results reveal that autoinducers and flagellum are the two major EPS signaling units in this subset where one unit becomes predominant for EPS production in absence of the other. Moreover, either unit exerts negative influence on EPS induction by the other. Both the EPS signaling cascades are independent of LuxO contribution and essentially involve sodium-driven flagellar motor and VpsR. A cell density and flagellum-mediated, but LuxO-independent, EPS signaling mechanism is considered to be functional in these organisms that confers their survival fitness.


Assuntos
Proteínas de Bactérias/metabolismo , Flagelina/metabolismo , Regulação Bacteriana da Expressão Gênica , Polissacarídeos Bacterianos/metabolismo , Percepção de Quorum , Vibrio cholerae/fisiologia , Proteínas de Bactérias/genética , Biofilmes , Flagelos/genética , Flagelos/metabolismo , Flagelina/genética , Homosserina/análogos & derivados , Homosserina/metabolismo , Cetonas/metabolismo , Lactonas/metabolismo , Transdução de Sinais , Vibrio cholerae/genética
10.
Heliyon ; 4(12): e01040, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30582054

RESUMO

Vibrio cholerae is the causative agent of acute dehydrating diarrhoeal disease cholera. Among 71 V. cholerae non-O1/non-O139 isolates, all yielded negative results for ctxA, ctxB and tcpA genes in PCR assay. Few strains were positive for stn (28.38%), and ompU (31.08%) genes. While all isolates were negative for ace gene, only two were positive for zot gene. All strains expressed toxR and toxT genes. It was also found that all isolates were slime-producer and these were capable of forming moderate to high biofilm. Biofilm formation was controlled positively by the transcriptional regulators VpsR and VpsT and was regulated negatively by HapR, as well as CRP regulatory complex. These isolates were resistant to ampicillin, furazolidone, doxycycline, vancomycin, erythromycin, while these were susceptible to ciprofloxacin, gentamycin, kanamycin, polymixin B, norfloxacin, chloramphenicol, sulphamethoxazole-trimethoprim, tetracycline, nalidixic acid, and streptomycin. Indeed, 69.01% isolates were resistant to multiple antibiotics (MAR: resistance to 3 or more antibiotics). Treatment protocols for cholera patients should be based on local antibiogram data.

11.
J Pathog ; 2018: 4518541, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30245888

RESUMO

Panton-Valentine leukocidin (luk-pv) is a cytotoxin that causes leukocyte destruction and tissue necrosis. The aim of this study was to determine the prevalence of the pv1, mecA, and nuc genes in Staphylococcus aureus isolates obtained from anterior nares and superficial infection sites of skin in a slum population of West Bengal, India. Expression level of pv1 gene was also analysed. Twenty-two S. aureus strains were isolated, and phenotype and genotype specific examinations for S. aureus isolates were carried out. Molecular identification was done by PCR using species-specific 16S rRNA primer pairs and finally 22 isolates were found to be positive as S. aureus. The antibiotic responsiveness of all these isolates and the minimum inhibitory concentration (MIC) of MRSA isolates were determined using the broth dilution method with vancomycin. Antibiogram analysis of isolated S. aureus strains with respect to different antimicrobial agents revealed antibiotic resistance ranging from 27 to 91%. The results of MIC for vancomycin showed 95% of strains to be VSSA and 5% to be VISA. 68% isolates were resistant to methicillin. All the isolates were subjected to detection of pv1, mecA, and nuc genes, and 9%, 68%, and 27% were found to harbour pvl, mecA, and nuc genes, respectively. All the MRSA strains produced high to moderate levels of biofilm. pvl gene expression was carried out in vitro by Real-Time PCR. The low ∆Ct value (0.493) was indicative of high expression of pvl in one S. aureus strain. Thus, detection of pvl gene in community acquired S. aureus indicates the emergence of pathogenic S. aureus in community setup in the studied region. The existing exploration is extremely imperative and informative for the high level multi-drug resistant S. aureus infections inclusive of MRSA.

12.
J Oleo Sci ; 67(8): 1043-1057, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30012899

RESUMO

Lung surfactant, besides alveolar stability, also provides defence against pathogens by surfactant proteins (SP), SP-A and SP-D. The hydrophobic proteins SP-B and SP-C enhance surface activity. An unusual and paradoxical effect of bovine LS and synthetic model LS with SP-B/-C was bactericidal to Staphylococcus aureus and Escherichia coli. Bacterial proliferation were investigated with bovine lung surfactant extract (BLES), dipalmitoylphosphatdylcholine, palmitooleylglycerol, in combination with SP-B/-C using standard microbiological colony forming unit (CFU) counts and structural imaging. BLES and other surfactant-SP-B/-C mixtures inhibit bacterial growth in the concentration range of 0 -7.5 mg/mL, at > 10 mg/mL paradoxical growth of both the bacterial species suggest antibiotic resistance. The lipid only LS have no effect on bacterial proliferation. Smaller peptide mimics of SP-B or SP-B1-25, were less efficient than SP-Cff. Ultra structural studies of the bacterial CFU using electron and atomic force microscopy suggest some membrane damage of S. aereus at inhibitory concentration of BLES, and some structural alteration of E. coli at dividing zones, suggesting utilization and incorporation of surfactant lipid species by both bacteria. The results depicted from in vitro studies are also in agreement with protein-protein interactions obtained from PatchDock, FireDock and ClasPro algorithm. The MD-simulation decipher a small range fluctuation of gyration radius of the LS proteins and their peptide mimics. The studies have alarming implications in the use of high dosages (100 mg/mL/kg body weight) of exogenous surfactant for treatment of respiratory distress syndrome, genetic knock-out abnormalities associated with these proteins, and the novel roles played by SP-B/C as bactericidal agents.


Assuntos
Antibacterianos , Surfactantes Pulmonares/farmacologia , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Interações Hidrofóbicas e Hidrofílicas , Lipossomos , Proteína A Associada a Surfactante Pulmonar/farmacologia , Proteína B Associada a Surfactante Pulmonar/farmacologia , Proteína C Associada a Surfactante Pulmonar/farmacologia , Proteína D Associada a Surfactante Pulmonar/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento
13.
J Hazard Mater ; 357: 187-197, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29886364

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) belong to a diverse group of environmental pollutants distributed ubiquitously in the environment. The carcinogenic properties of PAHs are the main causes of harm to human health. The green technology, biodegradation have become convenient options to address the environmental pollution. In this study, we analyzed the biodegradation potential of naphthalene with secondary carbon supplements (SCSs) in carbon deficient media (CSM) by Pseudomonas putida strain KD9 isolated from oil refinerary waste. The rigid-flexible molecular docking method revealed that the mutated naphthalene 1,2-dioxygenase had lower affinity for naphthalene than that found in wild type strain. Moreover, analytical methods (HPLC, qRT-PCR) and soft agar chemotaxis suggest sucrose (0.5 wt%) to be the best chemo-attractant and it unequivocally caused enhanced biodegradation of naphthalene (500 mg L-1) in both biofilm-mediated and shake-flask biodegradation methods. In addition, the morphological analysis detected from microscopy clearly showed KD9 to change its size and shape (rod to pointed) during biodegradation of naphthalene in CSM as sole source of carbon and energy. The forward versus side light scatter plot of the singlet cells obtained from flow cytometry suggests smaller cell size in CSM and lower florescence intensity of the total DNA content of cells. This study concludes that sucrose may be used as potential bio-stimulation agent.


Assuntos
Biofilmes/efeitos dos fármacos , Dioxigenases/metabolismo , Poluentes Ambientais/metabolismo , Complexos Multienzimáticos/metabolismo , Naftalenos/metabolismo , Pseudomonas putida/efeitos dos fármacos , Sacarose/farmacologia , Biodegradação Ambiental/efeitos dos fármacos , Carbono/farmacologia , Dioxigenases/genética , Complexos Multienzimáticos/genética , Mutação , Pseudomonas putida/fisiologia
14.
3 Biotech ; 7(6): 365, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29051846

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are a group of environmental pollutant that are given top priority to maintain water and soil quality to the most amenable standard. Biodegradation of PAHs by bacteria is the convenient option for decontamination on site or off site. The aim of the present study was to isolate and identify naturally occurring bacteria having mixed PAHs biodegradation ability. The newly isolated Pseudomonas putida strain KD6 was found to efficiently degrade 97.729% of 1500 mg L-1 mixed PAHs within 12 days in carbon-deficient minimal medium (CSM). The half-life (t1/2) and degradation rate constant (k) were estimated to be 3.2 and 0.2165 days, respectively. The first-order kinetic parameters in soil by strain KD6 had shown efficient biodegradation potency with the higher concentration of total PAHs (1500 mg kg-1 soil), t1/2 = 10.44 days-1. However, the biodegradation by un-inoculated control soil was found slower (t1/2 = 140 days-1) than the soil inoculated with P. putida strain KD6. The enzyme kinetic constants are also in agreement with chemical data obtained from the HPLC analysis. In addition, the sequence analysis and molecular docking studies showed that the strain KD6 encodes a mutant version of naphthalene 1,2-dioxygenase which have better Benzpyrene binding energy (-9.90 kcal mol-1) than wild type (-8.18 kcal mol-1) enzyme (chain A, 1NDO), respectively, with 0.00 and 0.08 RMSD values. The mutated naphthalene 1,2-dioxygenase nahAc has six altered amino acid residues near to the ligand binding site. The strain KD6 could be a good bioresource for in situ or ex situ biodegradation of polycyclic aromatic hydrocarbon.

15.
Sci Rep ; 7(1): 8252, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28811499

RESUMO

Diabetes is now epidemic worldwide. Several hundred-million peoples are presently suffering from this disease with other secondary-disorders. Stress, hypertension, sedentary life-style, carbohydrate/lipid metabolic-disorders due to genetic or environmental factors attributes to type-1 and/or type-2 diabetes. Present investigation demonstrates that stress-induced protein dermcidin isoform-2 (DCN-2) which appears in the serum of diabetic-patients play a key-role in this disease pathogenesis/severity. DCN-2 suppresses insulin production-release from liver/pancreas. It also increases the insulin-resistance. Stress-induction at the onset/progression of this disease is noticed as the high-level of lipid peroxides/low-level of free-thiols in association with increase of inflammatory-markers c-reactive protein and TNF-α. DCN-2 induced decrease in the synthesis of glucose-activated nitric oxide synthase (GANOS) and lower production of NO in liver has been shown here where NO is demonstrated to lower the expression of glucose trabsporter-4 (GLUT-4) and its translocation on liver membrane surface. This finally impairs glucose transport to organs from the extracellular fluid. Low level of glucose uptake further decreases glucose-induced insulin synthesis. The central role of DCN-2 has been demonstrated in type-1/type-2 diabetic individuals, in rodent hepatocytes and pancreatic-cell, tissue-slices, in-vitro and in-vivo experimental model. It can be concluded that stress-induced decrease in insulin synthesis/function, glucose transport is an interactive consequence of oxidative threats and inflammatory events.


Assuntos
Diabetes Mellitus/diagnóstico , Diabetes Mellitus/metabolismo , Peptídeos/metabolismo , Adulto , Animais , Biomarcadores , Glicemia , Diabetes Mellitus/sangue , Diabetes Mellitus Experimental , Modelos Animais de Doenças , Feminino , Expressão Gênica , Glucose/metabolismo , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Hepatócitos/metabolismo , Humanos , Insulina/sangue , Insulina/metabolismo , Resistência à Insulina , Masculino , Camundongos , Pessoa de Meia-Idade , Modelos Biológicos , Óxido Nítrico Sintase/metabolismo , Estresse Oxidativo , Peptídeos/química , Isoformas de Proteínas , Espécies Reativas de Oxigênio/metabolismo
16.
Can J Infect Dis Med Microbiol ; 2016: 9041636, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27366185

RESUMO

Staphylococcus aureus is opportunistic human as well as animal pathogen that causes a variety of diseases. A total of 100 Staphylococcus aureus isolates were obtained from clinical samples derived from hospitalized patients. The presumptive Staphylococcus aureus clinical isolates were identified phenotypically by different biochemical tests. Molecular identification was done by PCR using species specific 16S rRNA primer pairs and finally 100 isolates were found to be positive as Staphylococcus aureus. Screened isolates were further analyzed by several microbiological diagnostics tests including gelatin hydrolysis, protease, and lipase tests. It was found that 78%, 81%, and 51% isolates were positive for gelatin hydrolysis, protease, and lipase activities, respectively. Antibiogram analysis of isolated Staphylococcus aureus strains with respect to different antimicrobial agents revealed resistance pattern ranging from 57 to 96%. Our study also shows 70% strains to be MRSA, 54.3% as VRSA, and 54.3% as both MRSA and VRSA. All the identified isolates were subjected to detection of mecA, nuc, and hlb genes and 70%, 84%, and 40% were found to harbour mecA, nuc, and hlb genes, respectively. The current investigation is highly important and informative for the high level multidrug resistant Staphylococcus aureus infections inclusive also of methicillin and vancomycin.

17.
J Bacteriol ; 186(15): 4864-74, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15262923

RESUMO

Vibrio cholerae causes the life-threatening diarrheal disease cholera. This organism persists in aquatic environments in areas of endemicity, and it is believed that the ability of the bacteria to form biofilms in the environment contributes to their persistence. Expression of an exopolysaccharide (EPS), encoded by two vps gene clusters, is essential for biofilm formation and causes a rugose colonial phenotype. We previously reported that the lack of a flagellum induces V. cholerae EPS expression. To uncover the signaling pathway that links the lack of a flagellum to EPS expression, we introduced into a rugose flaA strain second-site mutations that would cause reversion back to the smooth phenotype. Interestingly, mutation of the genes encoding the sodium-driven motor (mot) in a nonflagellated strain reduces EPS expression, biofilm formation, and vps gene transcription, as does the addition of phenamil, which specifically inhibits the sodium-driven motor. Mutation of vpsR, which encodes a response regulator, also reduces EPS expression, biofilm formation, and vps gene transcription in nonflagellated cells. Complementation of a vpsR strain with a constitutive vpsR allele likely to mimic the phosphorylated state (D59E) restores EPS expression and biofilm formation, while complementation with an allele predicted to remain unphosphorylated (D59A) does not. Our results demonstrate the involvement of the sodium-driven motor and suggest the involvement of phospho-VpsR in the signaling cascade that induces EPS expression. A nonflagellated strain expressing EPS is defective for intestinal colonization in the suckling mouse model of cholera and expresses reduced amounts of cholera toxin and toxin-coregulated pili in vitro. Wild-type levels of virulence factor expression and colonization could be restored by a second mutation within the vps gene cluster that eliminated EPS biosynthesis. These results demonstrate a complex relationship between the flagellum-dependent EPS signaling cascade and virulence.


Assuntos
Flagelos/metabolismo , Regulação Bacteriana da Expressão Gênica , Polissacarídeos Bacterianos/metabolismo , Sódio/metabolismo , Vibrio cholerae O139/patogenicidade , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Cólera/microbiologia , Humanos , Intestinos/microbiologia , Camundongos , Movimento , Transdução de Sinais , Vibrio cholerae O139/genética , Vibrio cholerae O139/crescimento & desenvolvimento , Virulência
18.
J Cardiovasc Risk ; 9(6): 383-92, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12478209

RESUMO

OBJECTIVE: To evaluate the effects of present-day physical activity on selected coronary artery disease (CAD) risk factors of older former athletes and to compare these selected risk factors with age-matched older non-athletes. METHODS: The selected CAD risk factors were compared among the active older athletes ( n= 52; 45.9 +/- 4.75 years), sedentary older athletes ( n= 54; 47.2 +/- 4.67 years), and sedentary older non-athletes (n = 56; 46.0 +/- 5.26 years) of Calcutta and surroundings. CAD risk factors including anthropometric obesity parameters, blood lipids and blood pressure were measured. The present-day total physical activity of each individual was assessed by a questionnaire and estimated through the sum of energy expended during habitual, professional, recreational and conditioning physical activities, and sleeping time. The total physical activity was expressed as energy expended in mega joules per kilogram of body weight per week (MJ.kg. week ). Maximal oxygen consumption (VO2 max) was assessed by maximal treadmill test. Body score distributions in each group were also calculated. RESULTS: The selected CAD risk factors differed significantly among the groups. The sedentary older athletes had significantly higher mean values in weight, BMI, body fat percentage, total cholesterol, low-density lipoprotein (LDL) cholesterol, triglycerides and ratio of total cholesterol to high-density lipoprotein cholesterol (total C/HDLC) than that of active older athletes and sedentary older non-athletes. A reverse trend was observed in the case of HDL cholesterol. On the other hand, the presently active older athletes had significantly favourable levels of most of the selected CAD risk factors than the sedentary older athletes and non-athletes. The present-day total physical activity had significant negative association with total cholesterol, ratio of total cholesterol to HDL cholesterol, LDL cholesterol, triglycerides, resting systolic blood pressure when controlling for the effects of age, body mass index and body fat percentages. So, it is confirmed from this analysis that the subjects in the present study who had a greater present-day total physical activity had favourable CAD risk factors. CONCLUSIONS: The results of this study indicate that the risk for CAD or levels of selected CAD risk factors of former athletes after retirement from active sports were more related to the present-day physical activity i.e., higher total physical activity lowers the risk of coronary artery disease.


Assuntos
Doença das Coronárias/fisiopatologia , Atividade Motora/fisiologia , Esportes/fisiologia , Fatores Etários , Análise de Variância , Antropometria/métodos , Pressão Sanguínea/fisiologia , Composição Corporal/fisiologia , Humanos , Modelos Lineares , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade , Consumo de Oxigênio/fisiologia , Análise de Regressão , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA