Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(14)2021 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-34299060

RESUMO

Pseudomonas syringae-secreted HopA1 effectors are important determinants in host range expansion and increased pathogenicity. Their recent acquisitions via horizontal gene transfer in several non-pathogenic Pseudomonas strains worldwide have caused alarming increase in their virulence capabilities. In Arabidopsis thaliana, RESISTANCE TO PSEUDOMONAS SYRINGAE 6 (RPS6) gene confers effector-triggered immunity (ETI) against HopA1pss derived from P. syringae pv. syringae strain 61. Surprisingly, a closely related HopA1pst from the tomato pathovar evades immune detection. These responsive differences in planta between the two HopA1s represents a unique system to study pathogen adaptation skills and host-jumps. However, molecular understanding of HopA1's contribution to overall virulence remain undeciphered. Here, we show that immune-suppressive functions of HopA1pst are more potent than HopA1pss. In the resistance-compromised ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) null-mutant, transcriptomic changes associated with HopA1pss-elicited ETI are still induced and carry resemblance to PAMP-triggered immunity (PTI) signatures. Enrichment of HopA1pss interactome identifies proteins with regulatory roles in post-transcriptional and translational processes. With our demonstration here that both HopA1 suppress reporter-gene translations in vitro imply that the above effector-associations with plant target carry inhibitory consequences. Overall, with our results here we unravel possible virulence role(s) of HopA1 in suppressing PTI and provide newer insights into its detection in resistant plants.


Assuntos
Arabidopsis/imunologia , Proteínas de Bactérias/metabolismo , Interações Hospedeiro-Patógeno , Degradação do RNAm Mediada por Códon sem Sentido , Doenças das Plantas/imunologia , Imunidade Vegetal , Pseudomonas syringae/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiologia , Proteínas de Bactérias/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Virulência
2.
World J Microbiol Biotechnol ; 35(6): 90, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31147784

RESUMO

The ability of plant growth promoting rhizobacteria (PGPR) for imparting abiotic stress tolerance to plants has been widely explored in recent years; however, the diversity and potential of these microbes have not been maximally exploited. In this study, we characterized four bacterial strains, namely, Pseudomonas aeruginosa PM389, Pseudomonas aeruginosa ZNP1, Bacillus endophyticus J13 and Bacillus tequilensis J12, for potential plant growth promoting (PGP) traits under osmotic-stress, induced by 25% polyethylene glycol (PEG) in the growth medium. Growth curve analysis was performed in LB medium with or without PEG, in order to understand the growth patterns of these bacteria under osmotic-stress. All strains were able to grow and proliferate under osmotic-stress, although their growth rate was slower than that under non-stressed conditions (LB without PEG). Bacterial secretions were analyzed for the presence of exopolysaccharides and phytohormones and it was observed that all four strains released these compounds into the media, both, under stressed and non-stressed conditions. In the Pseudomonas strains, osmotic stress caused a decrease in the levels of auxin (IAA) and cytokinin (tZ), but an increase in the levels of gibberellic acid. The Bacillus strains on the other hand showed a stress-induced increase in the levels of all three phytohormones. P. aeruginosa ZNP1 and B. endophyticus J13 exhibited increased EPS production under osmotic-stress. While osmotic stress caused a decrease in the levels of EPS in P. aeruginosa PM389, B. tequilensis J12 showed no change in EPS quantities released into the media under osmotic stress when compared to non-stressed conditions. Upon inoculating Arabidopsis thaliana seedlings with these strains individually, it was observed that all four strains were able to ameliorate the adverse effects of osmotic-stress (induced by 25% PEG in MS-Agar medium) in the plants, as evidenced by their enhanced fresh weight, dry weight and plant water content, as opposed to osmotic-stressed, non-inoculated plants.


Assuntos
Arabidopsis/microbiologia , Fenômenos Fisiológicos Bacterianos , Secas , Pressão Osmótica , Desenvolvimento Vegetal , Reguladores de Crescimento de Plantas/metabolismo , Polissacarídeos Bacterianos/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Bacillus/crescimento & desenvolvimento , Bacillus/fisiologia , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Citocininas/metabolismo , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/microbiologia , Pseudomonas aeruginosa/crescimento & desenvolvimento , Pseudomonas aeruginosa/fisiologia , Rizosfera , Plântula/crescimento & desenvolvimento , Microbiologia do Solo , Estresse Fisiológico/fisiologia
3.
Plant Physiol Biochem ; 129: 180-188, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29886249

RESUMO

Plant growth promoting rhizobacteria (PGPR) are a diverse group of beneficial soil bacteria that help plants in myriad ways. They are implicated in the processes of general growth and development, as well as stress mitigation. Although the physiology of plant-PGPR interaction for abiotic stress tolerance has been well reported, the underlying molecular mechanisms in this phenomenon are not clearly understood. Among the many endogenous molecules that have been reported to impart abiotic stress tolerance in plants are a group of aliphatic amines called polyamines. Here, we report the impact of a free living, drought-mitigating rhizobacterial strain, Pseudomonas putida GAP-P45 on the expression of key genes in the polyamine metabolic pathway and the accumulation of the three major polyamines, putrescine, spermidine and spermine in water-stressed Arabidopsis thaliana. We observed that, inoculation of A. thaliana with P. putida GAP-P45 with or without water-stress, caused significant fluctuations in the expression of most polyamine biosynthetic genes (ADC, AIH, CPA, SPDS, SPMS and SAMDC) and cellular polyamine levels at different days of analysis post treatments. The enhanced accumulation of free cellular putrescine and spermidine observed in this study correlated positively with the water stress tolerant phenotype of A. thaliana in response to P. putida GAP-P45 inoculation reported in our previous study (Ghosh et al., 2017). Our data point towards (a) transcriptional regulation of polyamine biosynthetic genes and (b) complex post transcriptional regulation and/or interconversion/canalization of polyamines, by P. putida GAP-P45 under normal and water-stressed conditions.


Assuntos
Arabidopsis/metabolismo , Raízes de Plantas/microbiologia , Poliaminas/metabolismo , Pseudomonas putida/metabolismo , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Desidratação , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Raízes de Plantas/metabolismo , Raízes de Plantas/fisiologia , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA