Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
J Virol ; 96(2): e0136721, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34669449

RESUMO

Chloroviruses (family Phycodnaviridae) are large double-stranded DNA (dsDNA) viruses that infect unicellular green algae present in inland waters. These viruses have been isolated using three main chlorella-like green algal host cells, traditionally called NC64A, SAG, and Pbi, revealing extensive genetic diversity. In this study, we performed a functional genomic analysis on 36 chloroviruses that infected the three different hosts. Phylogenetic reconstruction based on the DNA polymerase B family gene clustered the chloroviruses into three distinct clades. The viral pan-genome consists of 1,345 clusters of orthologous groups of genes (COGs), with 126 COGs conserved in all viruses. Totals of 368, 268, and 265 COGs are found exclusively in viruses that infect NC64A, SAG, and Pbi algal hosts, respectively. Two-thirds of the COGs have no known function, constituting the "dark pan-genome" of chloroviruses, and further studies focusing on these genes may identify important novelties. The proportions of functionally characterized COGs composing the pan-genome and the core-genome are similar, but those related to transcription and RNA processing, protein metabolism, and virion morphogenesis are at least 4-fold more represented in the core genome. Bipartite network construction evidencing the COG sharing among host-specific viruses identified 270 COGs shared by at least one virus from each of the different host groups. Finally, our results reveal an open pan-genome for chloroviruses and a well-established core genome, indicating that the isolation of new chloroviruses can be a valuable source of genetic discovery. IMPORTANCE Chloroviruses are large dsDNA viruses that infect unicellular green algae distributed worldwide in freshwater environments. They comprise a genetically diverse group of viruses; however, a comprehensive investigation of the genomic evolution of these viruses is still missing. Here, we performed a functional pan-genome analysis comprising 36 chloroviruses associated with three different algal hosts in the family Chlorellaceae, referred to as zoochlorellae because of their endosymbiotic lifestyle. We identified a set of 126 highly conserved genes, most of which are related to essential functions in the viral replicative cycle. Several genes are unique to distinct isolates, resulting in an open pan-genome for chloroviruses. This profile is associated with generalist organisms, and new insights into the evolution and ecology of chloroviruses are presented. Ultimately, our results highlight the potential for genetic diversity in new isolates.


Assuntos
Genoma Viral , Phycodnaviridae/genética , Chlorella/classificação , Chlorella/virologia , DNA Viral/genética , Variação Genética , Genoma Viral/genética , Genômica , Especificidade de Hospedeiro , Phycodnaviridae/classificação , Phycodnaviridae/isolamento & purificação , Filogenia , Proteínas Virais/genética
2.
Viruses ; 13(5)2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33924931

RESUMO

Chloroviruses are unusual among viruses infecting eukaryotic organisms in that they must, like bacteriophages, penetrate a rigid cell wall to initiate infection. Chlorovirus PBCV-1 infects its host, Chlorella variabilis NC64A by specifically binding to and degrading the cell wall of the host at the point of contact by a virus-packaged enzyme(s). However, PBCV-1 does not use any of the five previously characterized virus-encoded polysaccharide degrading enzymes to digest the Chlorella host cell wall during virus entry because none of the enzymes are packaged in the virion. A search for another PBCV-1-encoded and virion-associated protein identified protein A561L. The fourth domain of A561L is a 242 amino acid C-terminal domain, named A561LD4, with cell wall degrading activity. An A561LD4 homolog was present in all 52 genomically sequenced chloroviruses, infecting four different algal hosts. A561LD4 degraded the cell walls of all four chlorovirus hosts, as well as several non-host Chlorella spp. Thus, A561LD4 was not cell-type specific. Finally, we discovered that exposure of highly purified PBCV-1 virions to A561LD4 increased the specific infectivity of PBCV-1 from about 25-30% of the particles forming plaques to almost 50%. We attribute this increase to removal of residual host receptor that attached to newly replicated viruses in the cell lysates.


Assuntos
Parede Celular/metabolismo , Chlorella/metabolismo , Chlorella/virologia , DNA Ligases/metabolismo , Interações Hospedeiro-Patógeno , Phycodnaviridae/fisiologia , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Clorofila/metabolismo , DNA Ligases/química , DNA Ligases/genética , Ativação Enzimática , Phycodnaviridae/classificação , Phycodnaviridae/genética , Phycodnaviridae/ultraestrutura , Filogenia , Especificidade da Espécie , Proteínas Virais/química , Proteínas Virais/genética , Vírion , Ligação Viral
3.
Viruses ; 12(6)2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585987

RESUMO

Chloroviruses are large, plaque-forming, dsDNA viruses that infect chlorella-like green algae that live in a symbiotic relationship with protists. Chloroviruses have genomes from 290 to 370 kb, and they encode as many as 400 proteins. One interesting feature of chloroviruses is that they encode a potassium ion (K+) channel protein named Kcv. The Kcv protein encoded by SAG chlorovirus ATCV-1 is one of the smallest known functional K+ channel proteins consisting of 82 amino acids. The KcvATCV-1 protein has similarities to the family of two transmembrane domain K+ channel proteins; it consists of two transmembrane α-helixes with a pore region in the middle, making it an ideal model for studying K+ channels. To assess their genetic diversity, kcv genes were sequenced from 103 geographically distinct SAG chlorovirus isolates. Of the 103 kcv genes, there were 42 unique DNA sequences that translated into 26 new Kcv channels. The new predicted Kcv proteins differed from KcvATCV-1 by 1 to 55 amino acids. The most conserved region of the Kcv protein was the filter, the turret and the pore helix were fairly well conserved, and the outer and the inner transmembrane domains of the protein were the most variable. Two of the new predicted channels were shown to be functional K+ channels.


Assuntos
Chlorella/virologia , Genoma Viral/genética , Phycodnaviridae/genética , Canais de Potássio/genética , Proteínas Virais/genética , Sequência de Aminoácidos/genética , Sequência de Bases , DNA Viral/genética , Variação Genética/genética , Phycodnaviridae/metabolismo , Domínios Proteicos/genética , Análise de Sequência de DNA
4.
PLoS One ; 12(8): e0180732, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28797084

RESUMO

In soybean, variegated flowers can be caused by somatic excision of the CACTA-type transposable element Tgm9 from Intron 2 of the DFR2 gene encoding dihydroflavonol-4-reductase of the anthocyanin pigment biosynthetic pathway. DFR2 was mapped to the W4 locus, where the allele containing Tgm9 was termed w4-m. In this study we have demonstrated that previously identified morphological mutants (three chlorophyll deficient mutants, one male sterile-female fertile mutant, and three partial female sterile mutants) were caused by insertion of Tgm9 following its excision from DFR2. Analyses of Tgm9 insertion sites among 105 independent mutants demonstrated that Tgm9 hops to all 20 soybean chromosomes from its original location on Chromosome 17. Some genomic regions are prone to increased Tgm9-insertions. Tgm9 transposed over 25% of the time into exon or intron sequences. Tgm9 is therefore suitable for generating an indexed insertional mutant collection for functional analyses of most soybean genes. Furthermore, desirable Tgm9-induced stable knockout mutants can be utilized in generating improved traits for commercial soybean cultivars.


Assuntos
Oxirredutases do Álcool/genética , Elementos de DNA Transponíveis , Genes de Plantas , Glycine max/genética , Proteínas de Plantas/genética , Alelos , Cromossomos de Plantas/genética , Técnicas de Inativação de Genes , Mutação , Plantas Geneticamente Modificadas/genética
5.
Genetica ; 145(3): 319-333, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28439758

RESUMO

The unavailability of the reproductive structure and unpredictability of vegetative characters for the identification and phylogenetic study of bamboo prompted the application of molecular techniques for greater resolution and consensus. We first employed internal transcribed spacer (ITS1, 5.8S rRNA and ITS2) sequences to construct the phylogenetic tree of 21 tropical bamboo species. While the sequence alone could grossly reconstruct the traditional phylogeny amongst the 21-tropical species studied, some anomalies were encountered that prompted a further refinement of the phylogenetic analyses. Therefore, we integrated the secondary structure of the ITS sequences to derive individual sequence-structure matrix to gain more resolution on the phylogenetic reconstruction. The results showed that ITS sequence-structure is the reliable alternative to the conventional phenotypic method for the identification of bamboo species. The best-fit topology obtained by the sequence-structure based phylogeny over the sole sequence based one underscores closer clustering of all the studied Bambusa species (Sub-tribe Bambusinae), while Melocanna baccifera, which belongs to Sub-Tribe Melocanneae, disjointedly clustered as an out-group within the consensus phylogenetic tree. In this study, we demonstrated the dependability of the combined (ITS sequence+structure-based) approach over the only sequence-based analysis for phylogenetic relationship assessment of bamboo.


Assuntos
Filogenia , RNA não Traduzido/genética , Sasa/genética , Conformação de Ácido Nucleico , RNA não Traduzido/química , Sasa/classificação
6.
Sci Rep ; 7: 43027, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28223695

RESUMO

MicroRNAs (miRNAs) regulate numerous crucial biological processes in plants. However, information is limited on their involvement in the biosynthesis of specialized metabolites in plants, including Catharanthus roseus that produces a number of pharmaceutically valuable, bioactive terpenoid indole alkaloids (TIAs). Using small RNA-sequencing, we identified 181 conserved and 173 novel miRNAs (cro-miRNAs) in C. roseus seedlings. Genome-wide expression analysis revealed that a set of cro-miRNAs are differentially regulated in response to methyl jasmonate (MeJA). In silico target prediction identified 519 potential cro-miRNA targets that include several auxin response factors (ARFs). The presence of cleaved transcripts of miRNA-targeted ARFs in C. roseus cells was confirmed by Poly(A) Polymerase-Mediated Rapid Amplification of cDNA Ends (PPM-RACE). We showed that auxin (indole acetic acid, IAA) repressed the expression of key TIA pathway genes in C. roseus seedlings. Moreover, we demonstrated that a miRNA-regulated ARF, CrARF16, binds to the promoters of key TIA pathway genes and repress their expression. The C. roseus miRNAome reported here provides a comprehensive account of the cro-miRNA populations, as well as their abundance and expression profiles in response to MeJA. In addition, our findings underscore the importance of miRNAs in posttranscriptional control of the biosynthesis of specialized metabolites.


Assuntos
Catharanthus/genética , MicroRNAs/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Acetatos/farmacologia , Sequência de Bases , Catharanthus/química , Catharanthus/metabolismo , Análise por Conglomerados , Ciclopentanos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , MicroRNAs/genética , Oxilipinas/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alcaloides de Triptamina e Secologanina/química , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Sci Rep ; 5: 18148, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26670135

RESUMO

Removal of terminal buds (topping) and control of the formation of axillary shoots (suckers) are common agronomic practices that significantly impact the yield and quality of various crop plants. Application of chemicals (suckercides) to plants following topping is an effective method for sucker control. However, our current knowledge of the influence of topping, and subsequent suckercide applications, to gene expression is limited. We analyzed the differential gene expression using RNA-sequencing in tobacco (Nicotiana tabacum) that are topped, or treated after topping by two different suckercides, the contact-localized-systemic, Flupro(®) (FP), and contact, Off-Shoot-T(®). Among the differentially expressed genes (DEGs), 179 were identified as common to all three conditions. DEGs, largely related to wounding, phytohormone metabolism and secondary metabolite biosynthesis, exhibited significant upregulation following topping, and downregulation after suckercide treatments. DEGs related to photosynthetic processes were repressed following topping and suckercide treatments. Moreover, topping and FP-treatment affect the expression of auxin and cytokinin signaling pathway genes that are possibly involved in axillary shoot formation. Our results provide insights into the global change of plant gene expression in response to topping and suckercide treatments. The regulatory elements of topping-inducible genes are potentially useful for the development of a chemical-free sucker control system.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Nicotiana/genética , Brotos de Planta/genética , Transcriptoma , Análise por Conglomerados , Biologia Computacional , Reparo do DNA , Replicação do DNA , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Redes e Vias Metabólicas , Folhas de Planta/genética , Folhas de Planta/metabolismo , Brotos de Planta/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais , Nicotiana/metabolismo
8.
BMC Plant Biol ; 13: 128, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24015925

RESUMO

BACKGROUND: Molecular markers allow rapid identification of biologically important germplasm/s having desired character. Previously we have reported a genotype specific molecular marker, Balco1128 [GenBank ID EU258678] of Bambusa balcooa containing an ORF (375 bp) having high similarity with receptor like cytoplasmic kinase of Arabidopsis and Oryza. Balco1128 was found to be associated only with bamboo genotypes endowed with high cellulose and low lignin contents of fibers. Under the above backdrop, it was necessitated to characterize this genetic marker for better understanding of its biological significance in context of superior quality fiber development. RESULTS: The full length cDNA (3342 bp) of BbKst, a serine-threonine protein kinase was isolated from B. balcooa comprising of six LRR domains at the N-terminal end and a kinase domain at the C-terminal end. Bacteria-expressed BbKst-kinase domain (3339 bp long) showed Mg(2+) dependent kinase activity at pH 7.0, 28°C. Bioinformatics study followed by phospho-amino analysis further confirmed that BbKst-kinase belongs to the serine/threonine protein kinase family. Transcript analysis of the BbKst gene following RNA slot blot hybridization and qPCR revealed higher expression of BbKst during initiation and elongation stages of fiber development. Tissue specific expression studies showed much higher expression of BbKst transcript in stems and internodes of B. balcooa than in leaves and rhizomes. Southern analysis revealed single copy insertion of BbKst in most of the Agrobacterium mediated transgenic tobacco plants. Real-time PCR detected 150-200 fold enhanced expression of BbKst in different T1 tobacco lines than that of the vector transformed plants. Heterologous expression of BbKst under control of 35S promoter in transgenic tobacco showed high cellulose deposition in the xylem fibers. Number of xylary fibers was higher in transgenic T0 and T1 plants than that of empty-vector transformed tobacco plants offering enhanced mechanical strength to the transgenic plants, which was also substantiated by their strong upright phenotypes, significantly higher cellulose contents, flexibility coefficient, slenderness ratio, and lower Runkel ratio of the fibers. CONCLUSIONS: This finding clearly demonstrated that BbKst gene (GenBank ID JQ432560) encodes a serine/threonine protein kinase. BbKst induced higher cellulose deposition/synthesis in transgenic tobacco plants, an important attribute of fiber quality bestowing additional strength to the plant.


Assuntos
Bambusa/enzimologia , Bambusa/metabolismo , Celulose/biossíntese , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Bambusa/genética , DNA Complementar , Genótipo , Lignina/genética , Lignina/metabolismo , Dados de Sequência Molecular , Proteínas Serina-Treonina Quinases , Reação em Cadeia da Polimerase em Tempo Real , Homologia de Sequência de Aminoácidos
9.
Gene ; 478(1-2): 19-27, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21272623

RESUMO

Recently bamboo has gained reputation as a major resource of non-wood fiber. The present study was undertaken to generate information about fiber development process in bamboo (Bambusa balcooa) using PCR-based suppressive subtractive hybridization (PCR-SSH) technique, as molecular mechanism of its fiber development is yet to be explored. SSH was performed between cDNA isolated from leaf (as driver) and internodes (as tester) of B. balcooa which indicated up-regulation of 521 ESTs. Among these 41 were contigs and 65 ESTs were singletons. On the basis of BLASTX search 307 ESTs with known functions were classified into several functional categories including transport, metabolism, information, perception and response to stimuli while others were either non-significant (120) or hypothetical proteins (94). A total of 51 out of 307 functional ESTs were found fiber specific and their global distribution among different plant species like maize, rice, cotton and Arabidopsis ESTs were determined. Net distributions and differential expression patterns of 13 important B. balcooa fiber specific cDNAs among different internodes during bamboo development were studied using RNA slot-blot, semi-quantitative RT-PCR and real time PCR. In-situ localization of mRNA transcript for few selected bamboo fiber ESTs namely, V1Bb147 (protein kinase-like protein) and V1Bb88 (myb domain-containing protein) were detected using Confocal Laser Scanning Microscope. Transcript levels of these genes exhibited an orchestral turn-over during bamboo development, suggesting their close association with fiber development, an event associated with several metabolic and physiological changes. The results clearly suggest that these genes are involved in several concerted mechanisms involving Ca(+) signaling pathway, cell wall synthesis, hormone regulation, system maintaining cell turgor pressure and cytoskeleton synthesis pathway accountable for bamboo fiber development signifying fiber development as a complex but ordered metabolic process involving differential expression of large scale fiber associated genes. This is the first report on systematic analysis of genes involved in bamboo fiber development.


Assuntos
Bambusa/crescimento & desenvolvimento , Bambusa/genética , Etiquetas de Sequências Expressas , Genes de Plantas , Estruturas Vegetais/genética , Bambusa/química , DNA Complementar , Bases de Dados Genéticas , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Hibridização de Ácido Nucleico/métodos , Filogenia , RNA Mensageiro/genética , RNA de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA
10.
Electron. j. biotechnol ; 13(5): 22-23, Sept. 2010. ilus, tab
Artigo em Inglês | LILACS | ID: lil-591904

RESUMO

RNA isolation from hard and woody internodal bamboo (Bambusa balcooa) tissue is very difficult due to the presence of secondary metabolites, polysaccharides, and polyphenolics. These compounds often co-precipitate with isolated RNA and hinder downstream applications. We have developed an efficient, cost effective and reproducible RNA isolation method from hard tissue of bamboo internode. This protocol includes an additional organic solvent refinement steps to remove endogenous phenolic compounds and acidic phenol (pH 4.2) to critically stabilize RNA in extraction buffer. In addition to these, two 2M Lithium chloride washing steps were introduced to eliminate DNA and polysaccharides contamination. The RNA isolated from the present protocol was found to be superior, when compared to total RNA extracted by other available protocols. The A260/A280 absorption ratio of the isolated RNA was found ranging between 1.89-1.97. The integrity of 28S and 18S rRNA was highly satisfactory when analyzed in agarose denaturing gel. RNA was further used for RT PCR, northern hybridization, cDNA library and subtractive hybridization without any further refinement.


Assuntos
RNA de Plantas/isolamento & purificação , Bambusa/genética , Northern Blotting , Compostos Fenólicos , Reação em Cadeia da Polimerase , Polissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA