Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Neuron ; 93(3): 560-573.e6, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28111078

RESUMO

Precise regulation of cellular metabolism is hypothesized to constitute a vital component of the developmental sequence underlying the life-long generation of hippocampal neurons from quiescent neural stem cells (NSCs). The identity of stage-specific metabolic programs and their impact on adult neurogenesis are largely unknown. We show that the adult hippocampal neurogenic lineage is critically dependent on the mitochondrial electron transport chain and oxidative phosphorylation machinery at the stage of the fast proliferating intermediate progenitor cell. Perturbation of mitochondrial complex function by ablation of the mitochondrial transcription factor A (Tfam) reproduces multiple hallmarks of aging in hippocampal neurogenesis, whereas pharmacological enhancement of mitochondrial function ameliorates age-associated neurogenesis defects. Together with the finding of age-associated alterations in mitochondrial function and morphology in NSCs, these data link mitochondrial complex function to efficient lineage progression of adult NSCs and identify mitochondrial function as a potential target to ameliorate neurogenesis-defects in the aging hippocampus.


Assuntos
Células-Tronco Adultas/metabolismo , Envelhecimento/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Neurogênese , Neurônios/metabolismo , Células-Tronco Adultas/citologia , Animais , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Grupo de Alta Mobilidade/genética , Hipocampo/citologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Células-Tronco Neurais , Neurônios/citologia , Fosforilação Oxidativa
3.
Ann Clin Transl Neurol ; 2(7): 739-47, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26273686

RESUMO

OBJECTIVE: To determine the safety and efficacy of a home-based functional exercise program in spinal and bulbar muscular atrophy (SBMA). METHODS: Subjects were randomly assigned to participate in 12 weeks of either functional exercises (intervention) or a stretching program (control) at the National Institutes of Health in Bethesda, MD. A total of 54 subjects enrolled, and 50 completed the study with 24 in the functional exercise group and 26 in the stretching control group. The primary outcome measure was the Adult Myopathy Assessment Tool (AMAT) total score, and secondary measures included total activity by accelerometry, muscle strength, balance, timed up and go, sit-to-stand test, health-related quality of life, creatine kinase, and insulin-like growth factor-1. RESULTS: Functional exercise was well tolerated but did not lead to significant group differences in the primary outcome measure or any of the secondary measures. The functional exercise did not produce significantly more adverse events than stretching, and was not perceived to be difficult. To determine whether a subset of the subjects may have benefited, we divided them into high and low functioning based on baseline AMAT scores and performed a post hoc subgroup analysis. Low-functioning individuals receiving the intervention increased AMAT functional subscale scores compared to the control group. INTERPRETATION: Although these trial results indicate that functional exercise had no significant effect on total AMAT scores or on mobility, strength, balance, and quality of life, post hoc findings indicate that low-functioning men with SBMA may respond better to functional exercises, and this warrants further investigation with appropriate exercise intensity.

4.
Neurobiol Dis ; 70: 12-20, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24925468

RESUMO

Spinal and bulbar muscular atrophy (SBMA, Kennedy's disease) is a motor neuron disease caused by polyglutamine repeat expansion in the androgen receptor. Although degeneration occurs in the spinal cord and muscle, the exact mechanism is not clear. Induced pluripotent stem cells from spinal and bulbar muscular atrophy patients provide a useful model for understanding the disease mechanism and designing effective therapy. Stem cells were generated from six patients and compared to control lines from three healthy individuals. Motor neurons from four patients were differentiated from stem cells and characterized to understand disease-relevant phenotypes. Stem cells created from patient fibroblasts express less androgen receptor than control cells, but show androgen-dependent stabilization and nuclear translocation. The expanded repeat in several stem cell clones was unstable, with either expansion or contraction. Patient stem cell clones produced a similar number of motor neurons compared to controls, with or without androgen treatment. The stem cell-derived motor neurons had immunoreactivity for HB9, Isl1, ChAT, and SMI-32, and those with the largest repeat expansions were found to have increased acetylated α-tubulin and reduced HDAC6. Reduced HDAC6 was also found in motor neuron cultures from two other patients with shorter repeats. Evaluation of stably transfected mouse cells and SBMA spinal cord showed similar changes in acetylated α-tubulin and HDAC6. Perinuclear lysosomal enrichment, an HDAC6 dependent process, was disrupted in motor neurons from two patients with the longest repeats. SBMA stem cells present new insights into the disease, and the observations of reduced androgen receptor levels, repeat instability, and reduced HDAC6 provide avenues for further investigation of the disease mechanism and development of effective therapy.


Assuntos
Atrofia Bulboespinal Ligada ao X/fisiopatologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Neurônios Motores/fisiologia , Acetilação , Adulto , Idoso , Atrofia Bulboespinal Ligada ao X/genética , Células Cultivadas , Expansão das Repetições de DNA , Feminino , Fibroblastos/fisiologia , Desacetilase 6 de Histona , Histona Desacetilases/deficiência , Humanos , Masculino , Pessoa de Meia-Idade , Neurogênese/fisiologia , Receptores Androgênicos/metabolismo , Tubulina (Proteína)/metabolismo , Adulto Jovem
5.
EMBO J ; 32(13): 1793-5, 2013 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-23727887

RESUMO

During evolution, the mammalian brain massively expanded its size. However, the exact roles of distinct neural precursors, identified in the developing cortex during embryogenesis, for size expansion and surface folding (i.e., gyration) remain largely unknown. New findings by Nonaka-Kinoshita et al advance our understanding of embryonic neural precursor function by identifying cell type-selective functions for size expansion and folding, and challenge previously held concepts of mammalian brain development.


Assuntos
Encéfalo/fisiologia , Diferenciação Celular , Córtex Cerebral/fisiologia , Embrião de Mamíferos/fisiologia , Proteínas de Filamentos Intermediários/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Células-Tronco/fisiologia , Animais , Nestina
6.
Talanta ; 73(3): 466-70, 2007 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-19073057

RESUMO

Detection of cell surface proteins is widely used as molecular markers for initiation, progression and severity of many diseases. In particular, detection of cell adhesion molecules (CAMs) on endothelial cells is important as it indicates the extent of inflammation associated with several diseases including arthritis, asthma, tumor metastasis, etc. Here, we report, a rapid method for detection of CAMs on endothelial cells by covalently immobilizing TNF-alpha induced cells on a photoactivated polystyrene microtiter plate at 50 degrees C in 45min followed by performing enzyme-linked immunosorbent assay (ELISA) technique at elevated temperature. Our method reduced the time of cell-ELISA to 3h with results akin to conventional cell-ELISA carried out in 38h. The method thus described herein could be potentially useful in clinical and research laboratories for rapid detection of cell surface proteins including CAMs on intact cell samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA