Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 13(615): eabh1486, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34644148

RESUMO

Discovery of small-molecule degraders that activate ubiquitin ligase­mediated ubiquitination and degradation of targeted oncoproteins in cancer cells has been an elusive therapeutic strategy. Here, we report a cancer cell­based drug screen of the NCI drug-like compounds library that enabled identification of small-molecule degraders of the small ubiquitin-related modifier 1 (SUMO1). Structure-activity relationship studies of analogs of the hit compound CPD1 led to identification of a lead compound HB007 with improved properties and anticancer potency in vitro and in vivo. A genome-scale CRISPR-Cas9 knockout screen identified the substrate receptor F-box protein 42 (FBXO42) of cullin 1 (CUL1) E3 ubiquitin ligase as required for HB007 activity. Using HB007 pull-down proteomics assays, we pinpointed HB007's binding protein as the cytoplasmic activation/proliferation-associated protein 1 (CAPRIN1). Biolayer interferometry and compound competitive immunoblot assays confirmed the selectivity of HB007's binding to CAPRIN1. When bound to CAPRIN1, HB007 induced the interaction of CAPRIN1 with FBXO42. FBXO42 then recruited SUMO1 to the CAPRIN1-CUL1-FBXO42 ubiquitin ligase complex, where SUMO1 was ubiquitinated in several of human cancer cells. HB007 selectively degraded SUMO1 in patient tumor­derived xenografts implanted into mice. Systemic administration of HB007 inhibited the progression of patient-derived brain, breast, colon, and lung cancers in mice and increased survival of the animals. This cancer cell­based screening approach enabled discovery of a small-molecule degrader of SUMO1 and may be useful for identifying other small-molecule degraders of oncoproteins.


Assuntos
Neoplasias , Proteína SUMO-1 , Animais , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Ubiquitinação
2.
Acta Neuropathol ; 142(2): 227-241, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34128081

RESUMO

In human neurodegenerative diseases associated with the intracellular aggregation of Tau protein, the ordered cores of Tau filaments adopt distinct folds. Here, we analyze Tau filaments isolated from the brain of individuals affected by Prion-Protein cerebral amyloid angiopathy (PrP-CAA) with a nonsense mutation in the PRNP gene that leads to early termination of translation of PrP (Q160Ter or Q160X), and Gerstmann-Sträussler-Scheinker (GSS) disease, with a missense mutation in the PRNP gene that leads to an amino acid substitution at residue 198 (F198S) of PrP. The clinical and neuropathologic phenotypes associated with these two mutations in PRNP are different; however, the neuropathologic analyses of these two genetic variants have consistently shown the presence of numerous neurofibrillary tangles (NFTs) made of filamentous Tau aggregates in neurons. We report that Tau filaments in PrP-CAA (Q160X) and GSS (F198S) are composed of 3-repeat and 4-repeat Tau isoforms, having a striking similarity to NFTs in Alzheimer disease (AD). In PrP-CAA (Q160X), Tau filaments are made of both paired helical filaments (PHFs) and straight filaments (SFs), while in GSS (F198S), only PHFs were found. Mass spectrometry analyses of Tau filaments extracted from PrP-CAA (Q160X) and GSS (F198S) brains show the presence of post-translational modifications that are comparable to those seen in Tau aggregates from AD. Cryo-EM analysis reveals that the atomic models of the Tau filaments obtained from PrP-CAA (Q160X) and GSS (F198S) are identical to those of the Tau filaments from AD, and are therefore distinct from those of Pick disease, chronic traumatic encephalopathy, and corticobasal degeneration. Our data support the hypothesis that in the presence of extracellular amyloid deposits and regardless of the primary amino acid sequence of the amyloid protein, similar molecular mechanisms are at play in the formation of identical Tau filaments.


Assuntos
Doença de Alzheimer/metabolismo , Amiloidose/metabolismo , Emaranhados Neurofibrilares/patologia , Placa Amiloide/patologia , Proteínas tau/metabolismo , Doença de Alzheimer/patologia , Amiloidose/complicações , Encéfalo/patologia , Degeneração Corticobasal/metabolismo , Doença de Gerstmann-Straussler-Scheinker/metabolismo , Humanos , Fenótipo , Placa Amiloide/metabolismo , Proteínas Priônicas/metabolismo , Príons/metabolismo
3.
J Phys Chem B ; 121(36): 8503-8511, 2017 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-28816462

RESUMO

Rotational echo double resonance (REDOR) is a highly successful method for heteronuclear distance determination in biological solid-state NMR, and 1H detection methods have emerged in recent years as a powerful approach to improving sensitivity and resolution for small sample quantities by utilizing fast magic-angle spinning (>30 kHz) and deuteration strategies. In theory, involving 1H as one of the spins for measuring REDOR effects can greatly increase the distance measurement range, but few experiments of this type have been reported. Here we introduce a pulse sequence that combines frequency-selective REDOR (FSR) with 1H detection. We demonstrate this method with applications to samples of uniformly 13C,15N,2H-labeled alanine and uniformly 13C,2H,15N-labeled GB1 protein, back-exchanged with 30% H2O and 70% D2O, employing a variety of frequency-selective 13C pulses to highlight unique spectral features. The resulting, robust REDOR effects provide (1) tools for resonance assignment, (2) restraints of secondary structure, (3) probes of tertiary structure, and (4) approaches to determine the preferred orientation of aromatic rings in the protein core.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte/química , Fragmentos de Peptídeos/química , Isótopos de Carbono , Deutério , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espectroscopia de Prótons por Ressonância Magnética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA