Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(3): eadk0818, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38232155

RESUMO

Woolly mammoths in mainland Alaska overlapped with the region's first people for at least a millennium. However, it is unclear how mammoths used the space shared with people. Here, we use detailed isotopic analyses of a female mammoth tusk found in a 14,000-year-old archaeological site to show that she moved ~1000 kilometers from northwestern Canada to inhabit an area with the highest density of early archaeological sites in interior Alaska until her death. DNA from the tusk and other local contemporaneous archaeological mammoth remains revealed that multiple mammoth herds congregated in this region. Early Alaskans seem to have structured their settlements partly based on mammoth prevalence and made use of mammoths for raw materials and likely food.


Assuntos
Mamutes , Humanos , Animais , Feminino , Recém-Nascido , Mamutes/genética , DNA , Canadá , Alaska , Fósseis
2.
Geobiology ; 20(1): 22-40, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34519399

RESUMO

The Deccan Traps in Western India is hypothesized to have caused significant fluctuations in climatic condition and organic matter (OM) productivity across the Cretaceous-Paleogene Boundary (K/PgB). The periodic release of large amounts of volatiles into the atmosphere is thought to drive these changes. Yet, direct impact of volcanism on the carbon cycle and ecosystem remains relatively unconstrained. For the first time, we attempt to trace changes in both marine and terrestrial carbon reservoirs from pre- and intervolcanic sedimentary units (infra- and inter-trappeans respectively) from Rajahmundry, ~1500 km SE of main eruption sites in Western India. Molecular level characterization of OM and stable isotope composition of carbonates (δ13 Ccarb ), bulk OM (δ13 Corg ), and n-alkane (δ13 Calk and δDalk ) have been analysed to provide a chemo-stratigraphic framework. In Rajahmundry, high CO2 concentration estimated from infra-trappean carbonate nodule is synchronous with the onset of the Deccan Traps and the Late Maastrichtian warming episode. Impact of the warming event is reflected in Rajahmundry from a major shift in the terrestrial ecosystem. Marine OM production also seems to have been low throughout the infra-trappean. A steady decrease in δ13 Ccarb values, increase in mortality rates and dwarfism in invertebrates immediately below the first volcanic units in Rajahmundry suggest stressed conditions from eruption in the western part of India ~40-60 kyrs prior to K/PgB. A significant increase in heterotrophic activity is observed after the volcanic deposits in Rajahmundry that seems to have controlled the marine carbon reservoir for a maximum of ~200 kyrs after the boundary. Advent of pteridophytes, increase in carbon content and positive shifts in δ13 Ccarb and δ13 Calk values in the upper inter-trappean units mark the onset of recovery in terrestrial and marine environments. Overall, our results suggest significant perturbations in the carbon reservoir as a consequence of the Deccan eruption.


Assuntos
Carbono , Erupções Vulcânicas , Ciclo do Carbono , Isótopos de Carbono/análise , Ecossistema , Isótopos/análise
3.
Nano Lett ; 21(6): 2580-2587, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33705154

RESUMO

Spin-transfer torque (STT) and spin-orbit torque (SOT) are spintronic phenomena allowing magnetization manipulation using electrical currents. Beyond their fundamental interest, they allow developing new classes of magnetic memories and logic devices, in particular based on domain wall (DW) motion. In this work, we report the study of STT-driven DW motion in ferrimagnetic manganese nickel nitride (Mn4-xNixN) films, in which magnetization and angular momentum compensation can be obtained by the fine adjustment of the Ni content. Large domain wall velocities, approaching 3000 m/s, are measured for Ni compositions close to the angular momentum compensation point. The reversal of the DW motion direction, observed when the compensation composition is crossed, is related to the change of direction of the angular momentum with respect to that of the spin polarization. This is confirmed by the results of ab initio band structure calculations.

4.
Appl Opt ; 60(36): 11247-11255, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-35201117

RESUMO

This paper presents a graphene-metal dual functional metadevice to provide two separate applications simultaneously, viz., absorption and cross-polarization conversion (CPC) of the electromagnetic (EM) wave without any structural deformations in the terahertz (THz) gap under two different biasing conditions. The meta-atom of the device bears stacked layers of metallic elliptical-shaped split rings, a thin zinc oxide (ZnO) layer, a slotted graphene layer printed over another ZnO layer backed by a continuous gold plate. It provides more than 70% absorptivity over a bandwidth of 3.40 THz (4.25 THz and 7.65 THz), with 90% absorptivity peak at 6.84 THz when the externally applied static electric field (ξ) on the patterned graphene surface is 8.52 V/nm. The change of the ξ to a value of 0.44 V/nm enables the device to produce a CPC ratio (CPCR) above 90% over a bandwidth of almost 3.87 THz (2.22 THz and 6.09 THz), with near unity polarization conversion ratio peaks occurring at 2.38 THz, 3.80 THz, and 5.82 THz. Both findings have been validated using an exhaustive equivalent circuit analysis. The design possesses ultrathin properties (λ0/12.49), along with compactness (λ0/5), which has been improved significantly compared to their microwave counterparts. The proposed metadevice finds useful applications in THz sensing, stealth technology, THz communication, detection, polarization manipulation of EM waves, etc.

5.
Methods Mol Biol ; 2253: 89-112, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33315220

RESUMO

The process of allostery is often guided by subtle changes in the non-covalent interactions between residues of a protein. These changes may be brought about by minor perturbations by natural processes like binding of a ligand or protein-protein interaction. The challenge lies in capturing minute changes at the residue interaction level and following their propagation at local as well as global distances. While macromolecular effects of the phenomenon of allostery are inferred from experiments, a computational microscope can elucidate atomistic-level details leading to such macromolecular effects. Network formalism has served as an attractive means to follow this path and has been pursued further for the past couple of decades. In this chapter some concepts and methods are summarized, and recent advances are discussed. Specifically, the changes in strength of interactions (edge weight) and their repercussion on the overall protein organization (residue clustering) are highlighted. In this review, we adopt a graph spectral method to probe these subtle changes in a quantitative manner. Further, the power of this method is demonstrated for capturing re-ordering of side-chain interactions in response to ligand binding, which culminates into formation of a protein-protein complex in ß2-adrenergic receptors.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Receptores Adrenérgicos beta/química , Receptores Adrenérgicos beta/metabolismo , Algoritmos , Regulação Alostérica , Animais , Humanos , Modelos Moleculares , Ligação Proteica , Mapas de Interação de Proteínas
6.
Nano Lett ; 19(12): 8716-8723, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31664840

RESUMO

Spintronics, which is the basis of a low-power, beyond-CMOS technology for computational and memory devices, remains up to now entirely based on critical materials such as Co, heavy metals and rare-earths. Here, we show that Mn4N, a rare-earth free ferrimagnet made of abundant elements, is an exciting candidate for the development of sustainable spintronics devices. Mn4N thin films grown epitaxially on SrTiO3 substrates possess remarkable properties, such as a perpendicular magnetization, a very high extraordinary Hall angle (2%) and smooth domain walls at the millimeter scale. Moreover, domain walls can be moved at record speeds by spin-polarized currents, in absence of spin-orbit torques. This can be explained by the large efficiency of the adiabatic spin transfer torque, due to the conjunction of a reduced magnetization and a large spin polarization. Finally, we show that the application of gate voltages through the SrTiO3 substrates allows modulating the Mn4N coercive field with a large efficiency.

7.
Appl Opt ; 57(29): 8720-8726, 2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30461951

RESUMO

In this paper, using a graphene-based metasurface, we demonstrate a unique design to develop a highly efficient, broadband, mid-infrared cross-polarization converter. The proposed graphene-based metasurface structure comprises periodical ϕ-shaped graphene on the top surface of a noble-metal-backed dielectric silicon dioxide (SiO2). The reported structure converts the incident linearly polarized wave into cross-polarized components with a peak polarization conversion ratio of more than 0.9 over a large band. Furthermore, the metasurface structure exhibits the full width at half-maximum bandwidth of 41.98% with respect to its center frequency of 5.98 THz. The physical insights behind electromagnetic polarization conversion are supported by field distributions and retrieved electromagnetic parameters. The structure works as a broadband cross-polarization converter up to 40° incident angle for both TE and TM polarizations. In addition, the structure is found to be as thin as ∼λ/6 with respect to lowermost frequency of the polarization conversion. The period of the unit cell is ∼λ/24 to support the fact that the structure can be treated as a metasurface.

8.
Sci Rep ; 8(1): 9939, 2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29967418

RESUMO

Every two years groups worldwide participate in the Critical Assessment of Protein Structure Prediction (CASP) experiment to blindly test the strengths and weaknesses of their computational methods. CASP has significantly advanced the field but many hurdles still remain, which may require new ideas and collaborations. In 2012 a web-based effort called WeFold, was initiated to promote collaboration within the CASP community and attract researchers from other fields to contribute new ideas to CASP. Members of the WeFold coopetition (cooperation and competition) participated in CASP as individual teams, but also shared components of their methods to create hybrid pipelines and actively contributed to this effort. We assert that the scale and diversity of integrative prediction pipelines could not have been achieved by any individual lab or even by any collaboration among a few partners. The models contributed by the participating groups and generated by the pipelines are publicly available at the WeFold website providing a wealth of data that remains to be tapped. Here, we analyze the results of the 2014 and 2016 pipelines showing improvements according to the CASP assessment as well as areas that require further adjustments and research.


Assuntos
Caspase 12/metabolismo , Caspases/metabolismo , Biologia Computacional/métodos , Modelos Moleculares , Software , Caspase 12/química , Caspases/química , Humanos , Conformação Proteica
9.
Proteins ; 85(9): 1759-1776, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28598579

RESUMO

Accurate structural validation of proteins is of extreme importance in studies like protein structure prediction, analysis of molecular dynamic simulation trajectories and finding subtle changes in very similar structures. The benchmarks for today's structure validation are scoring methods like global distance test-total structure (GDT-TS), TM-score and root mean square deviations (RMSD). However, there is a lack of methods that look at both the protein backbone and side-chain structures at the global connectivity level and provide information about the differences in connectivity. To address this gap, a graph spectral based method (NSS-network similarity score) which has been recently developed to rigorously compare networks in diverse fields, is adopted to compare protein structures both at the backbone and at the side-chain noncovalent connectivity levels. In this study, we validate the performance of NSS by investigating protein structures from X-ray structures, modeling (including CASP models), and molecular dynamics simulations. Further, we systematically identify the local and the global regions of the structures contributing to the difference in NSS, through the components of the score, a feature unique to this spectral based scoring scheme. It is demonstrated that the method can quantify subtle differences in connectivity compared to a reference protein structure and can form a robust basis for protein structure comparison. Additionally, we have also introduced a network-based method to analyze fluctuations in side chain interactions (edge-weights) in an ensemble of structures, which can be an useful tool for the analysis of MD trajectories.


Assuntos
Modelos Moleculares , Conformação Proteica , Proteínas/química , Simulação por Computador , Cristalografia por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA