Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 654: 123999, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38490403

RESUMO

Colorectal cancer (CC) is one of the most predominant malignancies in the world, with the current treatment regimen consisting of surgery, radiation therapy, and chemotherapy. Chemotherapeutic drugs, such as 5-fluorouracil (5-FU), have gained popularity as first-line antineoplastic agents against CC but have several drawbacks, including variable absorption through the gastrointestinal tract, inconsistent liver metabolism, short half-life, toxicological reactions in several organ systems, and others. Therefore, herein, we develop chitosan-coated zinc-substituted cobalt ferrite nanoparticles (CZCFNPs) for the pH-sensitive (triggered by chitosan degradation within acidic organelles of cells) and sustained delivery of 5-FU in CC cells in vitro. Additionally, the developed nanoplatform served as an excellent exogenous optical coherence tomography (OCT) contrast agent, enabling a significant improvement in the OCT image contrast in a CC tissue phantom model with a biomimetic microvasculature. Further, this study opens up new possibilities for using OCT for the non-invasive monitoring and/or optimization of magnetic targeting capabilities, as well as real-time tracking of magnetic nanoparticle-based therapeutic platforms for biomedical applications. Overall, the current study demonstrates the development of a CZCFNP-based theranostic platform capable of serving as a reliable drug delivery system as well as a superior OCT exogenous contrast agent for tissue imaging.


Assuntos
Quitosana , Cobalto , Compostos Férricos , Nanopartículas , Medicina de Precisão , Meios de Contraste , Zinco , Tomografia de Coerência Óptica , Sistemas de Liberação de Medicamentos , Fluoruracila/uso terapêutico , Concentração de Íons de Hidrogênio , Nanomedicina Teranóstica
2.
Small ; : e2311559, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546015

RESUMO

Photoluminescence (PL) blinking of nanoparticles, while detrimental to their imaging applications, may benefit next-generation displays if the blinking is precisely controlled by reversible electron/hole injections from an external source. Considerable efforts are made to create well-characterized charged excitons within nanoparticles through electrochemical charging, which has led to enhanced control over PL-blinking in numerous instances. Manipulating the photocharging/discharging rates in nanoparticles by surface engineering can represent a straightforward method for regulating their blinking behaviors, an area largely unexplored for perovskite nanocrystals (PNCs). This work shows facet engineering leading to different morphologies of PNCs characterized by distinct blinking patterns. For instance, examining the PL intensity trajectories of single PNCs, representing the instantaneous photon count rate over time, reveals that the OFF-state population significantly increases as the number of facets increases from six to twenty-six. This study suggests that extra-faceted PNCs, owing to their polar facets and expanded surface area, render them more susceptible to photocharging, which results in larger OFF-state populations. Furthermore, the fluorescence correlation spectroscopy (FCS) study unveils that the augmented propensity for photocharging in extra-faceted PNCs can also originate from their greater tendency to form complexes with neighboring molecules.

3.
PLoS One ; 19(2): e0298908, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38416721

RESUMO

Planting vegetation on slopes is an effective way of improving slope stability while enhancing the aesthetic appearance of the landscape. However, plants growing on slopes are susceptible to natural drought stress (DS) conditions which commonly lead to water deficit in plant tissues that affect plant health and growth. This study investigated the photosynthetic gas exchange, plant water status and proline accumulation of three tropical perennials namely Clerodendrum paniculatum, Ipomoea pes-caprae and Melastoma malabathricum after being subjected to DS and re-watering (RW). During DS, there was a significant decrease in light-saturated photosynthetic CO2 assimilation rate (Asat), stomatal conductance (gs sat), and transpiration rate (Tr) for all three plant species. Leaf relative water content, shoot water potential, and leaf, stem and root water content also declined during DS. Proline concentration increased for all three species during DS, reaching especially high levels for C. paniculatum, suggesting that it heavily relies on the accumulation of proline to cope with DS. Most of the parameters recovered almost completely to levels similar to well-watered plants after RW, apart from M. malabathricum. Strong linear correlations were found between Asat and gs sat and between gs sat and Tr. Ultimately, C. paniculatum and I. pes-caprae had better drought tolerance than M. malabathricum.


Assuntos
Secas , Água , Fotossíntese , Folhas de Planta/metabolismo , Prolina/metabolismo
4.
ACS Omega ; 8(22): 19994-20003, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37305248

RESUMO

We study the microstructures in the drying droplets of gelatinized starch solutions on a flat substrate. Cryogenic scanning electron microscopy studies on the vertical cross-section of these drying droplets for the first time reveal a relatively thinner solid elastic crust of uniform thickness at the free surface, an intermediate mesh region below the crust, and an inner core of a cellular network structure made of starch nanoparticles. We find that the deposited circular films formed after drying are birefringent and azimuthally symmetric with a dimple at their center. We propose that the dimple formation in our sample occurs due to the evaporation-induced stress on the gel network structure in the drying droplet. The polarizing optical microscopic studies show that these films are optically uniaxial at their center and increasingly biaxial away from the center.

5.
J Phys Chem Lett ; 14(16): 3953-3960, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37078668

RESUMO

This Letter reports the facile harvesting of hot carriers (HCs) in a composite of 12-faceted dodecahedron CsPbBr3 nanocrystal (NC) and a scavenger molecule. We recorded ∼3.3 × 1011 s-1 HC cooling rate in NC when excited with ∼1.4 times the band gap energy (Eg), increasing to >3 × 1012 s-1 in the presence of scavengers at high concentration due to the HC extractions. Since the observed intrinsic charge transfer rate (∼1.7 × 1012 s-1) in our NC-scavenger complex is about an order of magnitude higher than the HC cooling rate (∼3.3 × 1011 s-1), carriers are harvested before their cooling. Further, a fluorescence correlation spectroscopy study reveals NC tends to form a quasi-stable complex with a scavenger molecule, ensuring charge transfer completed (τct ≈ 0.6 ps) much before the complex breaks apart (>600 µs). The overall results of our study highlight the promise shown by 12-faceted NCs and their implications in modern applications, including hot carrier solar cells.

6.
J Mol Model ; 29(4): 89, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36877401

RESUMO

The present computational study using B3LYP functional and 6-31+G(d) basis set has been accomplished to investigate the mechanism of the inverse demand Diels-Alder reaction between pyridyl imine and propene. The highly charged dicationic superelectrophilic diene with exceptionally low-lying LUMO makes the cycloaddition reaction with propene more favorable by significantly lowering the activation energy. The Wiberg bond indices are calculated in accordance with the formation and breaking processes of bonds. The synchronicity concept is also utilized to explain the global nature of the reaction. A potential outcome of this investigation is the utilization of propene as a C2 building block in the industry.

7.
Nano Lett ; 23(5): 1946-1953, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36825851

RESUMO

We report here the hot carrier (HC) cooling time scales within polyhedral CsPbBr3 nanocrystals (NCs) characterized by different numbers of facets (6 to 26) utilizing a femtosecond upconversion setup. Interestingly, the observed cooling time scale slows many-fold (>10 times) upon opening the new facets on the NC surface. Furthermore, a temperature-dependent study reveals that cooling in multifaceted NCs is polaron mediated, where newly opened polar facets and the soft lattice of CsPbBr3 NCs play pivotal roles. Our hallmark result of slow cooling in polyhedral NCs renders an excellent opportunity for harvesting high-energy carriers by a carefully chosen molecular system. To this end, employing the hole scavenger molecule aniline, we successfully extracted hot holes from optically pumped NCs. We believe that several intriguing properties of the polyhedral NCs, including rapid polaron formation, defect-tolerant nature, and the capability of soft lattice to support slow diffusion of charge carriers, resulted in decelerated cooling.

8.
Nat Commun ; 13(1): 7307, 2022 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-36435852

RESUMO

Mitotic spindle assembly is crucial for chromosome segregation and relies on bundles of microtubules that extend from the poles and overlap in the middle. However, how these structures form remains poorly understood. Here we show that overlap bundles arise through a network-to-bundles transition driven by kinetochores and chromosomes. STED super-resolution microscopy reveals that PRC1-crosslinked microtubules initially form loose arrays, which become rearranged into bundles. Kinetochores promote microtubule bundling by lateral binding via CENP-E/kinesin-7 in an Aurora B-regulated manner. Steric interactions between the bundle-associated chromosomes at the spindle midplane drive bundle separation and spindle widening. In agreement with experiments, theoretical modeling suggests that bundles arise through competing attractive and repulsive mechanisms. Finally, perturbation of overlap bundles leads to inefficient correction of erroneous kinetochore-microtubule attachments. Thus, kinetochores and chromosomes drive coarsening of a uniform microtubule array into overlap bundles, which promote not only spindle formation but also chromosome segregation fidelity.


Assuntos
Cinetocoros , Microtúbulos , Microtúbulos/metabolismo , Segregação de Cromossomos , Cinesinas
9.
Biophys J ; 121(9): 1753-1764, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35346641

RESUMO

Force fluctuations exhibited in focal adhesions that connect a cell to its extracellular environment point to the complex role of the underlying machinery that controls cell migration. To elucidate the explicit role of myosin motors in the temporal traction force oscillations, we vary the contractility of these motors in a dynamical model based on the molecular clutch hypothesis. As the contractility is lowered, effected both by changing the motor velocity and the rate of attachment/detachment, we show analytically in an experimentally relevant parameter space, that the system goes from decaying oscillations to stable limit cycle oscillations through a supercritical Hopf bifurcation. As a function of the motor activity and the number of clutches, the system exhibits a rich array of dynamical states. We corroborate our analytical results with stochastic simulations of the motor-clutch system. We obtain limit cycle oscillations in the parameter regime as predicted by our model. The frequency range of oscillations in the average clutch and motor deformation compares well with experimental results.


Assuntos
Adesões Focais , Miosinas , Movimento Celular , Adesões Focais/metabolismo , Modelos Biológicos , Miosinas/metabolismo
10.
J Phys Chem Lett ; 13(2): 606-613, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35019662

RESUMO

Extraction of hot carriers is of prime importance because of its potential to overcome the energy loss that limits the efficiency of an optoelectronic device. Employing a femtosecond upconversion setup, herein we report a few picoseconds carrier cooling time of colloidal graphene quantum dots (GQDs) is at least an order of magnitude slower compared to that in its bulk form. A slower carrier cooling time of GQDs compared to that of the other semiconductor quantum dots and their bulk materials is indeed a coveted property of GQDs that would allow one easy harvesting of high energy species employing a suitable molecular system as shown in this study. A subpicosecond hot hole transfer time scale has been achieved in a GQD-molecular system composite with high transfer efficiency. Our finding suggests a dramatic enhancement of the efficiency of GQD based optoelectronic devices can possibly be a reality.

11.
Environ Pollut ; 295: 118681, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34933060

RESUMO

Heavy metal or metalloid contamination is a common problem in soils of urban environments. Their introduction can be due to unpremeditated anthropogenic activities like atmospheric deposition produced by diffuse sources, construction activities and landscape maintenance. Phytoremediation is a rapidly evolving, sustainable approach to remediate the contaminated lands where metals and metalloids are highly persistent in the environment. The present work sets out to determine the level of 12 heavy metals and metalloids (As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb and Zn) in soil and their accumulation by plant foliage found in nature parks and industrial sites in Singapore. The latter also involve the investigation of the remediation capacity of selected tropical plant species found at the sampling sites. The study is done using digestion and inductively coupled plasma-optical emission spectrometry. Eleven soil sampling sites across Singapore with 300 sampling points were selected, where soil (0-10 cm) and plant foliage samples were collected. Bioconcentration factors were determined to assess the phytoremediation potential of the collected plant species. Toxicity risk of heavy metals were assessed by comparing the target and intervention values from the soil quality guidelines by the Dutch Standard. Results of the study revealed there were regions where levels of heavy metals and metalloids were relatively high and could affect the environment and the health of flora and fauna in Singapore. Our study discovered that there were available tropical plant species (e.g., wildflowers, ferns and shrubs) which could potentially play a significant role in the remediation of contaminated lands that could open up a huge possibility of developing a sustainable and environmentally-friendly way of managing this emerging urban problem. Results showed that 12 plant species, including hyperaccumulator like Pteris vittata, Centella asiatica, were effective for the accumulation of heavy metals and metalloids.


Assuntos
Metaloides , Metais Pesados , Poluentes do Solo , Efeitos Antropogênicos , Biodegradação Ambiental , Monitoramento Ambiental , Metaloides/análise , Metais Pesados/análise , Singapura , Solo , Poluentes do Solo/análise
12.
Soft Matter ; 17(47): 10614-10627, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34605510

RESUMO

Active force generation by an actin-myosin cortex coupled to a cell membrane allows the cell to deform, respond to the environment, and mediate cell motility and division. Several membrane-bound activator proteins move along it and couple to the membrane curvature. Besides, they can act as nucleating sites for the growth of filamentous actin. Actin polymerization can generate a local outward push on the membrane. Inward pull from the contractile actomyosin cortex can propagate along the membrane via actin filaments. We use coupled evolution of fields to perform linear stability analysis and numerical calculations. As activity overcomes the stabilizing factors such as surface tension and bending rigidity, the spherical membrane shows instability towards pattern formation, localized pulsation, and running pulsation between poles. We present our results in terms of phase diagrams and evolutions of the coupled fields. They have relevance for living cells and can be verified in experiments on artificial cell-like constructs.


Assuntos
Actomiosina , Corrida , Citoesqueleto de Actina , Actinas , Miosinas
13.
J Phys Chem B ; 125(39): 11017-11025, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34583511

RESUMO

Photoinduced electron transfer (PET) from an excited-state CsPbBr3 nanocrystal (NC) to rhodamine 6G (r6G) is studied in toluene using different fluorescence-based techniques. Because of weak solubility of r6G in toluene, excess r6G molecules adsorb at NC surface which result in a much slower rotational diffusion time scale of r6G in the presence of NCs. Study of intrinsic PET benefits from the soft molecular interactions leading to donor (NC)-acceptor (r6G) complex formation, where solvent diffusion parameters would not play any role in the PET kinetics. Femtosecond transients of NCs are nicely fit to a Poisson expression originally proposed by Tachiya. Conclusive fittings to the temperature dependence quenching data reveal two interesting observations: (1) Even though the average number of surface trap state in a NC does not change with temperature (5-60 °C), the trap-state-induced quenching time scale is accelerated with increase in temperature, pointing toward a more efficient trapping at higher temperature. (ii) In the presence of r6G, a fast (∼150 ps per r6G molecule) interfacial PET time scale is observed, which remains unaffected by temperature (5-60 °C). Our findings demonstrate that even a simple "perovskite NC-electron acceptor" composite like that in the present study can ensure a rapid interfacial charge separation. Such information will help us to realize the actual potential of perovskites NCs in their real applications.


Assuntos
Elétrons , Nanopartículas , Compostos de Cálcio , Óxidos , Rodaminas , Titânio
14.
Phys Chem Chem Phys ; 23(36): 20709-20717, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34516596

RESUMO

It is usually assumed that enzymes retain their native structure during catalysis. However, the aggregation and fragmentation of proteins can be difficult to detect and sometimes conclusions are drawn based on the assumption that the protein is in its native form. We have examined three model enzymes, alkaline phosphatase (AkP), hexokinase (HK) and glucose oxidase (GOx). We find that these enzymes aggregate or fragment after addition of chemical species directly related to their catalysis. We used several independent techniques to study this behavior. Specifically, we found that glucose oxidase and hexokinase fragment in the presence of D-glucose but not L-glucose, while hexokinase aggregates in the presence of Mg2+ ion and either ATP or ADP at low pH. Alkaline phosphatase aggregates in the presence of Zn2+ ion and inorganic phosphate. The aggregation of hexokinase and alkaline phosphatase does not appear to attenuate their catalytic activity. Our study indicates that specific multimeric structures of native enzymes may not be retained during catalysis and suggests pathways for different enzymes to associate or separate over the course of substrate turnover.


Assuntos
Fosfatase Alcalina/química , Glucose Oxidase/química , Hexoquinase/química , Fosfatase Alcalina/metabolismo , Biocatálise , Glucose Oxidase/metabolismo , Hexoquinase/metabolismo , Modelos Moleculares , Estrutura Molecular , Agregados Proteicos
15.
J Phys Chem Lett ; 12(22): 5413-5422, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34080871

RESUMO

Blinking of freely diffusing CsPbBr3 nanocrystals (NCs) is studied using fluorescence lifetime correlation spectroscopy (FLCS). Emitted photons from each NCs are assigned to an emission state (exciton or trap) based on their lifetime. Subsequently, an intrastate autocorrelation function (ACF) and an interstate cross-correlation function (CCF) are constructed. Fitting of the AFCs with an analytical model shows that, at low excitation power, the microsecond blinking timescale of the exciton state matches well with that of the trap state. Most interestingly, both of those timescales further correlate with the microsecond growth timescale of the CCF. The strong anti-correlation of the CCF along with the stretched exponential nature of the blinking kinetics confirms the involvement of carrier diffusion and dispersive trap states in NC blinking. At high excitation power, enhanced sample heterogeneity causes a more dispersive blinking. To the best of our knowledge, this is the first report of a NC blinking study using a single-molecule-based FLCS technique.

16.
Glob Chang Biol ; 27(17): 4139-4153, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34021965

RESUMO

An increasingly urbanized world is one of the most prominent examples of global environmental change. Across the globe, urban parks are designed and managed in a similar way, resulting in visually pleasing expansions of lawn interspersed with individually planted trees of varying appearances and functional traits. These large urban greenspaces have the capacity to provide various ecosystem services, including those associated with soil physicochemical properties. Our aim was to explore whether soil properties in urban parks diverge underneath vegetation producing labile or recalcitrant litter, and whether the impact is affected by climatic zone (from a boreal to temperate to tropical city). We also compared these properties to those in (semi)natural forests outside the cities to assess the influence of urbanization on plant-trait effects. We showed that vegetation type affected percentage soil organic matter (OM), total carbon (C) and total nitrogen (N), but inconsistently across climatic zones. Plant-trait effects were particularly weak in old parks in the boreal and temperate zones, whereas in young parks in these zones, soils underneath the two tree types accumulated significantly more OM, C and N compared to lawns. Within climatic zones, anthropogenic drivers dominated natural ones, with consistently lower values of organic-matter-related soil properties under trees producing labile or recalcitrant litter in parks compared to forests. The dominating effect of urbanization is also reflected in its ability to homogenize soil properties in parks across the three cities, especially in lawn soils and soils under trees irrespective of functional trait. Our study demonstrates that soil functions that relate to carbon and nitrogen dynamics-even in old urban greenspaces where plant-soil interactions have a long history-clearly diverged from those in natural ecosystems, implying a long-lasting influence of anthropogenic drivers on soil ecosystem services.


Assuntos
Ecossistema , Solo , Florestas , Árvores , Urbanização
17.
Sci Total Environ ; 781: 146573, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-33798876

RESUMO

Organic waste, the predominant component of global solid waste, has never been higher, resulting in increased landfilling, incineration, and open dumping that releases greenhouse gases and toxins that contribute to global warming and environmental pollution. The need to create and adopt sustainable closed-loop systems for waste reduction and valorization is critical. Using organic waste as a feedstock, gasification and pyrolysis systems can produce biooil, syngas, and thermal energy, while reducing waste mass by as much as 85-95% through conversion into biochar, a valuable byproduct with myriad uses from soil conditioning to bioremediation and carbon sequestration. Here, we present a novel case study detailing the circular economy of gasification biochar in Singapore's Gardens by the Bay. Biochar produced from horticultural waste within the Gardens was tested as a partial peat moss substitute in growing lettuce, pak choi, and pansy, and found to be a viable substitute for peat moss. At low percentages of 20-30% gasification biochar, fresh weight yields for lettuce and pak choi were comparable to or exceeded those of plants grown in pure peat moss. The biochar was also analyzed as a potential additive to concrete, with a 2% biochar mortar compound found to be of suitable strength for non-structural functions, such as sidewalks, ditches, and other civil applications. These results demonstrate the global potential of circular economies based on local biochar creation and on-site use through the valorization of horticultural waste via gasification, generating clean, renewable heat or electricity, and producing a carbon-neutral to -negative byproduct in the form of biochar. They also indicate the potential of scaled-up pyrolysis or gasification systems for a circular economy in waste management.


Assuntos
Carvão Vegetal , Pirólise , Singapura , Solo
18.
Annu Rev Phys Chem ; 72: 51-72, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33710910

RESUMO

Lateral organization in the plane of the plasma membrane is an important driver of biological processes. The past dozen years have seen increasing experimental support for the notion that lipid organization plays an important role in modulating this heterogeneity. Various biophysical mechanisms rooted in the concept of liquid-liquid phase separation have been proposed to explain diverse experimental observations of heterogeneity in model and cell membranes with distinct but overlapping applicability. In this review, we focus on the evidence for and the consequences of the hypothesis that the plasma membrane is poised near an equilibrium miscibility critical point. Critical phenomena explain certain features of the heterogeneity observed in cells and model systems but also go beyond heterogeneity to predict other interesting phenomena, including responses to perturbations in membrane composition.


Assuntos
Membrana Celular/química , Membrana Celular/fisiologia , Células Eucarióticas , Lipídeos de Membrana/química , Lipídeos de Membrana/fisiologia , Microdomínios da Membrana/química , Microdomínios da Membrana/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/fisiologia
19.
J Mol Model ; 27(3): 74, 2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547503

RESUMO

A number of superalkali (M3O / M3S; M = Li, Na, K)-doped borazine and hexalithio borazine complexes are considered for the theoretical study of their electronic structure and quadratic polarizability. Electron-rich O/S atom of superalkali species remains very close to one boron atom of the ring through non-covalent interaction. The first-hyperpolarizability increases rather significantly upon superalkali doping. The chosen complexes possess diffuse excess electron which is located on the superpalkali moiety of borazine complexes and at the ring site of lithiated borazines. First-hyperpolarizability of M3O(S)@B3N3Li6 complexes are significantly larger than that of the corresponding M3O(S)@B3N3H6 complexes. The magnitude of first-hyperpolarizability of Li3S@B3N3Li6 is larger than that of Li3S@B3N3H6 by about three orders of magnitude.

20.
Bioresour Technol ; 327: 124809, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33578356

RESUMO

This review is focused on the sustainable management of harvested water hyacinth (WH) via thermochemical conversion to carbonaceous materials (CMs), biofuels, and chemicals for energy and environmental applications. One of the major challenges in thermochemical conversion is to guarantee the phytoremediation performance of biochar and the energy conversion efficiency in biowaste-to-energy processes. Thus, a circular sustainable approach is proposed to improve the biochar and energy production. The co-conversion process can enhance the syngas, heat, and energy productions with high-quality products. The produced biochar should be economically feasible and comparable to available commercial carbon products. The removal and control of heavy and transition metals are essential for the safe implementation and management of WH biochar. CMs derived from biochar are of interest in wastewater treatment, air purification, and construction. It is important to control the size, shape, and chemical compositions of the CM particles for higher-value products like catalyst, adsorbent or conductor.


Assuntos
Eichhornia , Biodegradação Ambiental , Biocombustíveis , Carbono , Carvão Vegetal , Temperatura Alta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA