Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 13(12)2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-38136594

RESUMO

BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) derivatives have attracted attention as probes in applications like imaging and sensing due to their unique properties like (1) strong absorption and emission in the visible and near-infrared regions of the electromagnetic spectrum, (2) strong fluorescence and (3) supreme photostability. They have also been employed in areas like photodynamic therapy. Over the last decade, BODIPY-based molecules have even emerged as candidates for cancer treatments. Cancer remains a significant health issue world-wide, necessitating a continuing search for novel therapeutic options. BODIPY is a flexible fluorophore with distinct photophysical characteristics and is a fascinating drug development platform. This review provides a comprehensive overview of the most recent breakthroughs in BODIPY-based small molecules for cancer or disease detection and therapy, including their functional potential.


Assuntos
Compostos de Boro , Fotoquimioterapia , Compostos de Boro/uso terapêutico , Fluorescência , Corantes Fluorescentes
2.
Front Plant Sci ; 13: 952820, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968153

RESUMO

Phytohormone abscisic acid (ABA) plays a key role in stomata closure, osmostress acclimation, and vegetative and embryonic dormancy. Group B3 Raf protein kinases (B3-Rafs) serve as positive regulators of ABA and osmostress signaling in the moss Physcomitrium patens and the angiosperm Arabidopsis thaliana. While P. patens has a single B3-Raf called ARK, specific members of B3-Rafs among six paralogs regulate ABA and osmostress signaling in A. thaliana, indicating functional diversification of B3-Rafs in angiosperms. However, we found that the liverwort Marchantia polymorpha, belonging to another class of bryophytes, has three paralogs of B3-Rafs, MpARK1, MpARK2, and MpARK3, with structural variations in the regulatory domains of the polypeptides. By reporter assays of the P. patens ark line and analysis of genome-editing lines of M. polymorpha, we found that these B3-Rafs are functionally redundant in ABA response, with respect to inhibition of growth, tolerance to desiccation and expression of stress-associated transcripts, the majority of which are under the control of the PYR/PYL/RCAR-like receptor MpPYL1. Interestingly, gemmae in gemma cups were germinating only in mutant lines associated with MpARK1, indicating that dormancy in the gametophyte is controlled by a specific B3-Raf paralog. These results indicated not only conservation of the role of B3-Rafs in ABA and osmostress response in liverworts but also functional diversification of B3-Rafs, which is likely to have occurred in the early stages of land plant evolution.

3.
Int J Biol Macromol ; 219: 919-939, 2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-35961557

RESUMO

In the study, leaf extract of Carica papaya was utilized for the biogenic fabrication process of chitosan functionalized silver nanoparticles (Ag-Chito NPs). HRTEM analysis revealed that the fabricated Ag-Chito NPs was spherical in shape, with an average particle size of 13.31 (±0.07) nm. FTIR, UV-Vis, DLS, and other characterizations were also performed to analyze the diverse physicochemical properties of the particles. The antibacterial potency of the synthesized Ag-Chito NPs was tested against the two clinically isolated multidrug resistant uropathogenic bacterial strains, i.e. MLD 2 (Escherichia coli) and MLD 4 (Staphylococcus aureus) through MIC, MBC, time and concentration dependent killing kinetic assay, inhibition of biofilm formation assay, fluorescence and SEM imaging. Significantly, Ag-Chito NPs showed the highest sensitivity against the MLD 2 (MIC value of 12.5 µg/mL) strain, as compared to the MLD 4 (MIC value of 15 µg/mL) strain. From the hemolysis assay, it was revealed that Ag-Chito NPs exerted no significant toxicity up to 50 µg/mL against healthy human blood cells. Additionally, in silico analysis of chitosan (functionalized on the surface of AgNPs) and bacterial cell membrane protein also evidently suggested a strong interaction between Ag-Chito NPs and bacterial cells, which might be responsible for bacterial cell death.


Assuntos
Quitosana , Nanopartículas Metálicas , Antibacterianos/química , Antibacterianos/farmacologia , Quitosana/farmacologia , Escherichia coli , Humanos , Proteínas de Membrana , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Extratos Vegetais/química , Prata/química , Prata/farmacologia
4.
Plant Physiol Biochem ; 186: 279-289, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35932652

RESUMO

Potassium (K) is an integral part of plant nutrition, playing essential roles in plant growth and development. Despite its abundance in soils, the limitedly available form of K ion (K+) for plant uptake is a critical factor for agricultural production. Plants have evolved complex transport systems to maintain appropriate K+ levels in tissues under changing environmental conditions. Adequate stimulation and coordinated actions of multiple K+-channels and K+-transporters are required for nutrient homeostasis, reproductive growth, cellular signaling and stress adaptation responses in plants. Various contemporary studies revealed that K+-homeostasis plays a substantial role in plant responses and tolerance to abiotic stresses. The beneficial effects of K+ in plant responses to abiotic stresses include its roles in physiological and biochemical mechanisms involved in photosynthesis, osmoprotection, stomatal regulation, water-nutrient absorption, nutrient translocation and enzyme activation. Over the last decade, we have seen considerable breakthroughs in K research, owing to the advances in omics technologies. In this aspect, omics investigations (e.g., transcriptomics, metabolomics, and proteomics) in systems biology manner have broadened our understanding of how K+ signals are perceived, conveyed, and integrated for improving plant physiological resilience to abiotic stresses. Here, we update on how K+-uptake and K+-distribution are regulated under various types of abiotic stress. We discuss the effects of K+ on several physiological functions and the interaction of K+ with other nutrients to improve plant potential against abiotic stress-induced adverse consequences. Understanding of how K+ orchestrates physiological mechanisms and contributes to abiotic stress tolerance in plants is essential for practicing sustainable agriculture amidst the climate crisis in global agriculture.


Assuntos
Plantas , Potássio , Adaptação Fisiológica , Íons , Desenvolvimento Vegetal , Estresse Fisiológico
5.
Plants (Basel) ; 11(3)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35161252

RESUMO

Soil salinity, a major environmental concern, significantly reduces plant growth and production all around the world. Finding solutions to reduce the salinity impacts on plants is critical for global food security. In recent years, the priming of plants with organic chemicals has shown to be a viable approach for the alleviation of salinity effects in plants. The current study examined the effects of exogenous ethanol in triggering salinity acclimatization responses in soybean by investigating growth responses, and numerous physiological and biochemical features. Foliar ethanol application to saline water-treated soybean plants resulted in an enhancement of biomass, leaf area, photosynthetic pigment contents, net photosynthetic rate, shoot relative water content, water use efficiency, and K+ and Mg2+ contents, leading to improved growth performance under salinity. Salt stress significantly enhanced the contents of reactive oxygen species (ROS), malondialdehyde, and electrolyte leakage in the leaves, suggesting salt-induced oxidative stress and membrane damage in soybean plants. In contrast, ethanol treatment of salt-treated soybean plants boosted ROS-detoxification mechanisms by enhancing the activities of antioxidant enzymes, including peroxidase, ascorbate peroxidase, catalase, and glutathione S-transferase. Ethanol application also augmented the levels of proline and total free amino acids in salt-exposed plants, implying a role of ethanol in maintaining osmotic adjustment in response to salt stress. Notably, exogenous ethanol decreased Na+ uptake while increasing K+ and Mg2+ uptake and their partitioning to leaves and roots in salt-stressed plants. Overall, our findings reveal the protective roles of ethanol against salinity in soybean and suggest that the use of this cost-effective and easily accessible ethanol in salinity mitigation could be an effective approach to increase soybean production in salt-affected areas.

6.
PeerJ ; 9: e12419, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34824915

RESUMO

Liverwort Marchantia polymorpha is considered as the key species for addressing a myriad of questions in plant biology. Exploration of drought tolerance mechanism(s) in this group of land plants offers a platform to identify the early adaptive mechanisms involved in drought tolerance. The current study aimed at elucidating the drought acclimation mechanisms in liverwort's model M. polymorpha. The gemmae, asexual reproductive units of M. polymorpha, were exposed to sucrose (0.2 M), mannitol (0.5 M) and polyethylene glycol (PEG, 10%) for inducing physiological drought to investigate their effects at morphological, physiological and biochemical levels. Our results showed that drought exposure led to extreme growth inhibition, disruption of membrane stability and reduction in photosynthetic pigment contents in M. polymorpha. The increased accumulation of hydrogen peroxide and malondialdehyde, and the rate of electrolyte leakage in the gemmalings of M. polymorpha indicated an evidence of drought-caused oxidative stress. The gemmalings showed significant induction of the activities of key antioxidant enzymes, including superoxide dismutase, catalase, ascorbate peroxidase, dehydroascorbate reductase and glutathione S-transferase, and total antioxidant activity in response to increased oxidative stress under drought. Importantly, to counteract the drought effects, the gemmalings also accumulated a significant amount of proline, which coincided with the evolutionary presence of proline biosynthesis gene Δ1-pyrroline-5-carboxylate synthase 1 (P5CS1) in land plants. Furthermore, the application of exogenous abscisic acid (ABA) reduced drought-induced tissue damage and improved the activities of antioxidant enzymes and accumulation of proline, implying an archetypal role of this phytohormone in M. polymorpha for drought tolerance. We conclude that physiological drought tolerance mechanisms governed by the cellular antioxidants, proline and ABA were adopted in liverwort M. polymorpha, and that these findings have important implications in aiding our understanding of osmotic stress acclimation processes in land plants.

7.
Chemistry ; 26(43): 9573-9579, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32216133

RESUMO

Peptoids, N-substituted glycine oligomers, represent an important class of peptidomimetics that can fold into three-dimensional structures in solution. Most of the folded peptoid structures, however, resemble helices, and this can limit their applications, specifically in asymmetric catalysis. In this work, for the first time, unique examples of pyrrolidine-based ß-turn-like peptoids are described and characterized, both in the solid state, by single-crystal X-ray analysis, and in solution, by circular dichroism spectroscopy. Furthermore, their highly efficient and enantioselective catalytic activity for the production of γ-nitro aldehydes by asymmetric Michael reaction in water was demonstrated. The structural properties and DFT-D3 calculations of the new ß-turn-like peptoids, as well as catalytic and spectroscopic studies on designed pyrrolidine-based helical peptoids, suggest that the ß-turn structure plays a key role in the stereoselectivity of the catalytic reaction.


Assuntos
Glicina/química , Peptidomiméticos/química , Peptoides/química , Catálise , Cristalografia por Raios X , Modelos Moleculares , Estereoisomerismo
9.
Angew Chem Int Ed Engl ; 58(9): 2785-2790, 2019 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-30648785

RESUMO

Water electrolysis is among the simplest method for generating hydrogen as an alternative renewable fuel. A major challenge associated with this process is the development of cheap, simple, and environmentally benign catalysts that lead to a minimum overpotential for water oxidation. Inspired by the Mn4 CaOx cluster that catalyzes water oxidation in photosystem II, described here is the synthesis and characterization of the manganese cluster [Mn12 O12 (O2 CC6 H2 (OH)3 )16 (H2 O)4 ] (Mn12 TH) along with its electrocatalytic activity at pH 6. Electrochemical, spectroscopic, and electron microscopy studies show that Mn12 TH is a homogeneous electrocatalyst for water oxidation and enables oxygen evolution with a reaction rate of 22 s-1 , high Faradic efficiency (93 %), and an overpotential of only 74 mV, the lowest reported to date. Based on the electrochemical data, the organic ligands, which can be described as the second coordination sphere of the catalytic manganese core, play a key role in facilitating the oxidation process and accelerating the reaction.

10.
Angew Chem Int Ed Engl ; 57(26): 7703-7708, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29667747

RESUMO

Metal-ligand coordination is a key interaction in the self-assembly of both biopolymers and synthetic oligomers. Although the binding of metal ions to synthetic proteins and peptides is known to yield high-order structures, the self-assembly of peptidomimetic molecules upon metal binding is still challenging. Herein we explore the self-assembly of three peptoid trimers bearing a bipyridine ligand at their C-terminus, a benzyl group at their N-terminus, and a polar group (N-ethyl-R) in the middle position (R=OH, OCH3 , or NH2 ) upon Cu2+ coordination. X-ray diffraction analysis revealed unique, highly symmetric, dinuclear cyclic structure or aqua-bridged dinuclear double-stranded peptoid helicates, formed by the self-assembly of two peptoid molecules with two Cu2+ ions. Only the macrocycle with the highest number of intermolecular hydrogen bonds is stable in solution, while the other two disassemble to their corresponding monometallic complexes.

11.
Biomed Pharmacother ; 83: 548-558, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27449536

RESUMO

Recently bio-inspired experimental processes for synthesis of nanoparticles are receiving significant attention in nanobiotechnology. Silver nanoparticles (Ag NPs) have been used very frequently in recent times to the wounds, burns and bacterial infections caused by drug-resistant microorganisms. Though, the antibacterial effects of Ag NPs on some multi drug-resistant bacteria specially against Gram positive bacteria has been established, but further investigation is needed to elicit its effectiveness against Gram negatives and to identify the probable mechanism of action. Thus, the present study was conducted to synthesize Ag NPs using Andrographis paniculata leaf extract and to investigate its antibacterial efficacy. After synthesis process the biosynthesized nanoparticles were purified and characterized with the help of various physical measurement techniques which raveled their purity, stability and small size range. The antimicrobial activity of Ag NPs was determined against both Gram-positive Enterococcus faecalis and Gram-negative Proteus vulgaris. Results showed comparatively higher antibacterial efficacy of Ag NPs against Gram positive Enterococcus faecalis strains. It was found that greater difference in zeta potential values between Gram positive bacteria and Ag NPs triggers better internalization of the particles. Thus the cell surface charge played vital role in cell killing which was confirmed by surface zeta potential study. Finally it may be concluded that green synthesized Ag NPs using Andrographis paniculata leaf extract can be very useful against both multi drug resistant Gram-positive and Gram-negative bacteria.


Assuntos
Materiais Biocompatíveis/farmacologia , Membrana Celular/química , Bactérias Gram-Negativas/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanotecnologia/métodos , Prata/farmacologia , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Difusão , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Difusão Dinâmica da Luz , Bactérias Gram-Negativas/ultraestrutura , Hidrodinâmica , Íons , Cinética , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Difração de Raios X
12.
Physiol Plant ; 156(4): 407-20, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26456006

RESUMO

Abscisic acid (ABA) is a phytohormone widely distributed among members of the land plant lineage (Embryophyta), regulating dormancy, stomata closure and tolerance to environmental stresses. In angiosperms (Magnoliophyta), ABA-induced gene expression is mediated by promoter elements such as the G-box-like ACGT-core motifs recognized by bZIP transcription factors. In contrast, the mode of regulation by ABA of gene expression in liverworts (Marchantiophyta), representing one of the earliest diverging land plant groups, has not been elucidated. In this study, we used promoters of the liverwort Marchantia polymorpha dehydrin and the wheat Em genes fused to the ß-glucuronidase (GUS) reporter gene to investigate ABA-induced gene expression in liverworts. Transient assays of cultured cells of Marchantia indicated that ACGT-core motifs proximal to the transcription initiation site play a role in the ABA-induced gene expression. The RY sequence recognized by B3 transcriptional regulators was also shown to be responsible for the ABA-induced gene expression. In transgenic Marchantia plants, ABA treatment elicited an increase in GUS expression in young gemmalings, which was abolished by simultaneous disruption of the ACGT-core and RY elements. ABA-induced GUS expression was less obvious in mature thalli than in young gemmalings, associated with reductions in sensitivity to exogenous ABA during gametophyte growth. In contrast, lunularic acid, which had been suggested to function as an ABA-like substance, had no effect on GUS expression. The results demonstrate the presence of ABA-specific response mechanisms mediated by conserved cis-regulatory elements in liverworts, implying that the mechanisms had been acquired in the common ancestors of embryophytes.


Assuntos
Ácido Abscísico/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Marchantia/genética , Reguladores de Crescimento de Plantas/farmacologia , Evolução Molecular , Expressão Gênica , Genes Reporter , Células Germinativas Vegetais , Marchantia/efeitos dos fármacos , Marchantia/fisiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Salicilatos/farmacologia , Estilbenos/farmacologia , Estresse Fisiológico , Triticum/genética
13.
Proc Natl Acad Sci U S A ; 112(46): E6388-96, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26540727

RESUMO

Plant response to drought and hyperosmosis is mediated by the phytohormone abscisic acid (ABA), a sesquiterpene compound widely distributed in various embryophyte groups. Exogenous ABA as well as hyperosmosis activates the sucrose nonfermenting 1 (SNF1)-related protein kinase2 (SnRK2), which plays a central role in cellular responses against drought and dehydration, although the details of the activation mechanism are not understood. Analysis of a mutant of the moss Physcomitrella patens with reduced ABA sensitivity and reduced hyperosmosis tolerance revealed that a protein kinase designated "ARK" (for "ABA and abiotic stress-responsive Raf-like kinase") plays an essential role in the activation of SnRK2. ARK encoded by a single gene in P. patens belongs to the family of group B3 Raf-like MAP kinase kinase kinases (B3-MAPKKKs) mediating ethylene, disease resistance, and salt and sugar responses in angiosperms. Our findings indicate that ARK, as a novel regulatory component integrating ABA and hyperosmosis signals, represents the ancestral B3-MAPKKKs, which multiplied, diversified, and came to have specific functions in angiosperms.


Assuntos
Bryopsida , Sistema de Sinalização das MAP Quinases/fisiologia , Pressão Osmótica/fisiologia , Proteínas de Plantas , Quinases raf , Sequência de Aminoácidos , Bryopsida/enzimologia , Bryopsida/genética , Dados de Sequência Molecular , Mutação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Quinases raf/genética , Quinases raf/metabolismo
14.
Biomed Pharmacother ; 72: 144-57, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26054689

RESUMO

Doxorubicin (DOX) is a well-known drug used to treat a wide range of solid tumor and hematological malignancies, but the use of this drug is now restricted owing to its severe side effects, including normal cellular toxicity. This study was conducted to evaluate the potency of self-assembled betulinic acid (SA-BA) against DOX induced chemotherapeutic toxicity in human peripheral blood lymphocytes (PBLs). The isolated betulinic acid from the bark of Ziziphus jujuba tree was purified by column chromatography and characterized by FT-IR, XRD, (1)H NMR and self-assembly property was investigated by SEM imaging. DOX treatment produced significant reduction of viability of PBLs mainly by lowering cellular anti-oxidant pool and elevating the reactive oxygen species level. Pre-treatment with SA-BA followed by DOX exposure for 24h protected the PBLs from DOX induced oxidative stress. Potent anti-apoptotic role of SA-BA was also confirmed by FACS analysis and western blot assay. Severe inflammation is one of the major concerns in DOX treatment. We found that pre-treatment with SA-BA on PBLs significantly protected the PBLs from DOX induced inflammation. Thus, our finding confirms that SA-BA can be used to ameliorate the cytotoxic effects of DOX, which can be a helpful strategy during DOX mediated chemotherapy in cancer patients.


Assuntos
Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Doxorrubicina/farmacologia , Substâncias Protetoras/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Triterpenos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Western Blotting , Forma do Núcleo Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Dissulfeto de Glutationa/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , L-Lactato Desidrogenase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Microscopia Eletrônica de Varredura , Fenômenos Ópticos , Estresse Oxidativo/efeitos dos fármacos , Triterpenos Pentacíclicos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Triterpenos/síntese química , Triterpenos/química , Difração de Raios X , Ácido Betulínico
15.
New Phytol ; 206(1): 209-219, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25545104

RESUMO

Plants acclimate to environmental stress signals such as cold, drought and hypersalinity, and provoke internal protective mechanisms. Abscisic acid (ABA), a carotenoid-derived phytohormone, which increases in response to the stress signals above, has been suggested to play a key role in the acclimation process in angiosperms, but the role of ABA in basal land plants such as mosses, including its biosynthetic pathways, has not been clarified. Targeted gene disruption of PpABA1, encoding zeaxanthin epoxidase in the moss Physcomitrella patens was conducted to determine the role of endogenous ABA in acclimation processes in mosses. The generated ppaba1 plants were found to accumulate only a small amount of endogenous ABA. The ppaba1 plants showed reduced osmotic acclimation capacity in correlation with reduced dehydration tolerance and accumulation of late embryogenesis abundant proteins. By contrast, cold-induced freezing tolerance was less affected in ppaba1, indicating that endogenous ABA does not play a major role in the regulation of cold acclimation in the moss. Our results suggest that the mechanisms for osmotic acclimation mediated by carotenoid-derived synthesis of ABA are conserved in embryophytes and that acquisition of the mechanisms played a crucial role in terrestrial adaptation and colonization by land plant ancestors.


Assuntos
Ácido Abscísico/metabolismo , Adaptação Fisiológica , Bryopsida/fisiologia , Carotenoides/metabolismo , Oxirredutases/genética , Reguladores de Crescimento de Plantas/metabolismo , Bryopsida/genética , Congelamento , Regulação da Expressão Gênica de Plantas , Osmose , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Estresse Fisiológico
16.
J Appl Toxicol ; 34(11): 1130-44, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24477783

RESUMO

The aim of the present study was to develop zinc sulfide nanoparticles (ZnS NPs) and to study their cytotoxicity against the KG-1A (human acute myeloid leukemia) cell line. ZnS NPs were synthesized using the pyrolytic method and characterized by X-ray diffraction, dynamic light scattering, surface zeta potential, scanning electron microscopy and atomic force microscopy. Cell viability study and flow cytometric analysis confirmed the potent cytotoxic effects of ZnS NPs on cancer cells in a dose-dependent fashion. Successful uptakes of ZnS NPs by leukemic cells were confirmed by phase contrast fluorescence microscopy. pH-dependent dissolution of ZnS NPs was done using atomic absorption microscopy to understand the cell-specific internalization of Zn(+) . This internalization of NPs facilitated the generation of excess reactive oxygen species (ROS), followed by tumor necrosis factor alpha (TNF-α) secretion which caused severe DNA damage as observed in the comet assay and altered the mitochondrial membrane potential (MMP) in leukemic cells. Surprisingly ZnS NPs had no toxic effects on normal lymphocytes at doses up to 50 µg ml(-1) . Pre-treatment with ROS and TNF-α inhibitor confirmed that these nanoparticles were able to kill leukemic cells by generating an excess amount of ROS and thereby initiated TNF-α mediated apoptosis pathway. These findings clarify the mechanism with which ZnS NPs induced anticancer activities in vitro. To elicit its utilities and its application to cancer treatment in vivo is under investigation.


Assuntos
Dano ao DNA , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Sulfetos/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , Compostos de Zinco/toxicidade , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Glutationa/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Potencial da Membrana Mitocondrial
17.
J Biol Inorg Chem ; 19(3): 399-414, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24445996

RESUMO

The objective of this study was to develop chitosan-based delivery of cobalt oxide nanoparticles to human leukemic cells and investigate their specific induction of apoptosis. The physicochemical properties of the chitosan-coated cobalt oxide nanoparticles were characterized using transmission electron microscopy, dynamic light scattering, X-ray diffraction, and Fourier transform infrared spectroscopy. The solubility of chitosan-coated cobalt oxide nanoparticles was higher at acidic pH, which helps to release more cobalt ions into the medium. Chitosan-coated cobalt oxide nanoparticles showed good compatibility with normal cells. However, our results showed that exposure of leukemic cells (Jurkat cells) to chitosan-coated cobalt oxide nanoparticles caused an increase in reactive oxygen species generation that was abolished by pretreatment of cells with the reactive oxygen species scavenger N-acetyl-L-cysteine. The apoptosis of Jurkat cells was confirmed by flow-cytometric analysis. Induction of TNF-α secretion was observed from stimulation of Jurkat cells with chitosan-coated cobalt oxide nanoparticles. We also tested the role of TNF-α in the induction of Jurkat cell death in the presence of TNF-α and caspase inhibitors. Treatment of leukemic cells with a blocker had a greater effect on cancer cell viability. From our findings, oxidative stress and caspase activation are involved in cancer cell death induced by chitosan-coated cobalt oxide nanoparticles.


Assuntos
Apoptose/fisiologia , Quitosana/química , Cobalto/química , Leucemia de Células T/metabolismo , Nanopartículas Metálicas/química , Óxidos/química , Fator de Necrose Tumoral alfa/fisiologia , Apoptose/efeitos dos fármacos , Quitosana/farmacologia , Quitosana/uso terapêutico , Cobalto/farmacologia , Cobalto/uso terapêutico , Relação Dose-Resposta a Droga , Humanos , Células Jurkat , Leucemia de Células T/tratamento farmacológico , Linfócitos/efeitos dos fármacos , Linfócitos/metabolismo , Óxidos/farmacologia , Óxidos/uso terapêutico , Fator de Necrose Tumoral alfa/farmacologia , Difração de Raios X
18.
Inorg Chem ; 53(1): 85-96, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24354306

RESUMO

A mononucleating (HL(1)) and a dinucleating (HL(2)) "end-off" compartmental ligand have been designed and synthesized by controlled Mannich reaction using p-cresol and bis(2-methoxyethyl)amine, and their formation has been rationalized. Six complexes have been prepared on treating HL(1) and HL(2) with Zn(II)X2 (X = Cl(-), Br(-), I(-)) with the aim to investigate their hydrolytic activity on phosphoester bond cleavage. Interestingly, the mononucleating ligand was observed to yield dinuclear complexes, [Zn2(L(1))2X2] (1-3), while the potential dinucleating ligand generated mononuclear complexes, [Zn(HL(2))X2] (4-6). Four (1-4), out of six complexes studied, were characterized by single-crystal X-ray diffraction (XRD): the Zn ion exhibits trigonal bipyramidal and tetrahedral coordination spheres in the di- and mononuclear complex, respectively. The hydrolytic kinetics, followed spectrophotometrically with 4-nitrophenylphosphate (4-NPP) in buffered dimethylformamide (DMF) (97.5% DMF, v/v) because of solubility reasons, under excess substrate conditions (substrate:complex = 20:1), indicated that the complexes enormously accelerate the rate of phosphomonoester hydrolysis with first order rate constants (kcat) in the range 2-10 s(-1) at 25 °C. In each case kinetic data analyses have been run by Michaelis-Menten treatment. The efficacy in the order of conversion of substrate to product (p-nitrophenolate ion) follows the trend 1 > 2 > 3 > 4 > 5 > 6, and the ratio of kcat of an analogous dinuclear to mononuclear complex is ≃2. An electrospray ionization-mass spectrometry (ESI-MS) study has revealed the dissociation of the centrosymmetric dinuclear complex to two mononuclear species instead of a syn-cooperative catalysis. Density functional theory (DFT) calculations have been performed to rationalize our proposed mechanistic pathway for phosphatase activity. The comparative analysis concludes the following facts under experimental conditions: (1) the halide bound to the active site affects the overall rate in the order: Cl(-) > Br(-) > I(-) regardless of nuclearity; (2) dinuclear complexes prevail over the mononuclear ones.


Assuntos
Técnicas de Química Combinatória , Complexos de Coordenação/química , Monoéster Fosfórico Hidrolases/metabolismo , Teoria Quântica , Zinco/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/metabolismo , Ativação Enzimática , Hidrólise , Cinética , Ligantes , Modelos Moleculares , Estrutura Molecular , Monoéster Fosfórico Hidrolases/química , Zinco/metabolismo
19.
Dalton Trans ; 43(2): 841-52, 2014 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-24154687

RESUMO

Seven dinuclear and one dinuclear based dicyanamide bridged polymeric Ni(II) complexes of phenol based compartmental ligands (HL(1)-HL(4)) have been synthesized with the aim to investigate their catecholase-like activity and to evaluate the most probable mechanistic pathway involved in this process. The complexes have been characterized by routine physicochemical studies as well as by X-ray single crystal structure analyses namely [Ni2(L(2))(SCN)3(H2O)(CH3OH)] (), [Ni2(L(4))(SCN)3(CH3OH)2] (), [Ni2(L(2))(SCN)2(AcO)(H2O)] (), [Ni2(L(4))(SCN)(AcO)2] (), [Ni2(L(2))(N3)3(H2O)2] (), [Ni2(L(4))(N3)3(H2O)2] (), [Ni2(L(1))(AcO)2(N(CN)2)]n () and [Ni2(L(3))(AcO)2(N(CN)2)] (), [SCN = isothiocyanate, AcO = acetate, N3 = azide, and N(CN)2 = dicyanamide anion; L(1-4) = 2,6-bis(R2-iminomethyl)-4-R1-phenolato, where R1 = methyl and tert-butyl, R2 = N,N-dimethyl ethylene for L(1-2) and R1 = methyl and tert-butyl, R2 = 2-(N-ethyl) pyridine for L(3-4)]. A UV-vis spectrophotometric study using 3,5-di-tert butylcatechol (3,5-DTBC) reveals that all the complexes are highly active in catalyzing the aerobic oxidation of (3,5-DTBC) to 3,5-di-tert-butylbenzoquinone (3,5-DTBQ) in methanol medium with the formation of hydrogen peroxide. An EPR study confirms the generation of radicals during the catalysis. Cyclic voltammetric studies of the complexes in the presence and absence of 3,5-DTBC have been performed. Reduction of Ni(II) to Ni(I) and that of the imine bond of the ligand system have been detected at ∼-1.0 V and ∼-1.5 V, respectively. Coulometric separation of the species at -1.5 V followed by the EPR study at 77 K confirms the species as an organic radical and thus most probably reduced imine species. Spectroelectrochemical analysis at -1.5 V clearly indicates the oxidation of 3,5-DTBC and thus suggests that the radical pathway is supposed to be responsible for the catecholase-like activity exhibited by the nickel complexes. The ligand centred radical generation has further been verified by density functional theory calculation.


Assuntos
Catecol Oxidase/metabolismo , Níquel/química , Compostos Organometálicos/química , Compostos Organometálicos/metabolismo , Fenol/química , Biocatálise , Catecol Oxidase/química , Cristalografia por Raios X , Radicais Livres/química , Ligantes , Modelos Moleculares , Conformação Molecular , Teoria Quântica , Bases de Schiff/química
20.
ISRN Oncol ; 2013: 709269, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24223312

RESUMO

Transitional metals and metal compounds have been used in versatile platforms for biomedical applications and therapeutic intervention. Severe side effects of anticancer drugs produce an urgent urge to develop new classes of anticancer agents with great potency as well as selectivity. In this background, recent studies demonstrate that monomeric manganese (MnII) thiocyanate complex (MMTC) holds great promise to exert effective antileukemic effects. MMTC was developed by a simple chemical reaction and characterized by elemental analyses, thermal analyses, and Fourier transform infrared (FTIR) spectroscopy. Anti-leukemic efficacy of the developed MMTC was estimated in KG-1A (AML) and K562 (CML) cell lines. Cell viability study, drug uptake assay, cellular redox balance (GSH and GSSG level), nitric oxide (NO) release level, reactive oxygen species (ROS) formation, alteration of mitochondrial membrane potential (MMP), and DNA fragmentation revealed that MMTC was able to produce significant antiproliferative effects on both cell lines at 25 µ g mL(-1) without showing any toxicological impact on normal lymphocytes. These findings will enlighten the biomedical application of manganese-based metal complexes as anti-leukemic agents.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA