Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Chemosphere ; 356: 141875, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583532

RESUMO

While passive sampling of ultra-low aqueous concentrations of hydrophobic organic compounds in environmental aqueous media has emerged as a promising analytical technique, there is a lack of good understanding of the fundamental diffusive processes. In this research, we used a fluorophore, pyrene, as a model compound to track diffusion in polymers through absorption and environmental media exchange processes. We directly tracked the penetration of pyrene into polyethylene (PE) and polyoxymethylene (POM) rods during absorption from water by sectioning the rod after different stages of absorption and observing the fluorescence signal through a microscope. Diffusion profiles of pyrene in polymers were simulated by numerical integration of Fickian diffusion. The results indicated that the uptake process in PE is governed by Fick's law and the absorption and desorption kinetics are similar in this polymer. However, the observed uptake profiles of pyrene in POM were non-Fickian and the release kinetics out of POM was slower compared to uptake into the polymer. We show that slower desorption from POM makes corrections for nonequilibrium using performance reference compounds (PRCs) problematic for deployments in water or sediment where there is significant advection. However, for static sediment deployments, the overall kinetics of exchange is controlled by slow transport through sediment and the hysteretic behavior of POM may not preclude the use of PRCs to interpret equilibrium status.


Assuntos
Monitoramento Ambiental , Polietileno , Pirenos , Resinas Sintéticas , Poluentes Químicos da Água , Pirenos/química , Polietileno/química , Difusão , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Monitoramento Ambiental/métodos , Cinética , Polímeros/química
2.
Environ Sci Technol ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36622805

RESUMO

Remedial investigations of sites contaminated with legacy pollutants like polychlorinated biphenyls (PCBs) have traditionally focused on mapping sediment contamination to develop a site conceptual model and select remedy options. Ignoring dissolved concentrations that drive transport and bioaccumulation often leads to an incomplete assessment of ongoing inputs to the water column and overestimation of potential effectiveness of sediment remediation. Here, we demonstrate the utility of codeployment of passive equilibrium samplers and freshwater mussels as dual lines of evidence to identify ongoing sources of PCBs from eight main tributaries of the Anacostia River in Washington, DC, that has been historically polluted from industrial and other human activities. The freely dissolved PCB concentrations measured using passive samplers tracked well with the accumulation in mussels and allowed predictions of biouptake within a factor of 2 for total PCBs and a factor of 4 for most congeners. One tributary was identified as the primary source of PCBs to the water column and became a focus of additional ongoing investigations. Codeployment of passive samplers and mussels provides strong lines of evidence to refine site conceptual models and identify ongoing sources critical to control to achieve river water quality standards and reduce bioaccumulation in the aquatic food web.

3.
Environ Pollut ; 316(Pt 1): 120490, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36273697

RESUMO

Semi-volatile organic compounds like polychlorinated biphenyls (PCBs) undergo diffusive exchange flux between a water body and the overlying air. The magnitude of this exchange can be a substantial component of the overall pollutant mass balance and needs to be determined accurately to identify major pollutant sources to the water body and to plan appropriate remedies. For the PCB-impacted Anacostia River in Washington DC (USA), quantification of air-water exchange has been a major data gap. In the present study, polyethylene passive samplers were used to measure PCB concentrations in air phase at six locations in DC over a period of one year to capture spatial and seasonal variations. Concurrent water phase PCB measurements were used to quantify the direction and magnitude of air-water exchange in the Anacostia River. Two locations had nearly an order of magnitude higher air phase PCB concentrations that could be related to localized sources. Remaining four locations provided similar air phase PCB concentrations that averaged from 270 ± 44 pg/m3 (summer) to 32 ± 4.3 pg/m3 (winter). ∑PCB water-air exchange fluxes were positive across all seasons, with net PCB volatilization of 180 ± 19 g/year from the surface water. Volatilization rate was an order of magnitude lower than previously estimated from a fate and transport model. PCB load from atmospheric deposition based on previous studies in this watershed was an order of magnitude lower than the volatilization rate. Results refuted a long-standing understanding of the air phase serving as a source of PCBs to the river as per the currently approved Total Maximum Daily Load assessment. The study demonstrates the utility of passive air phase measurements in delineating local terrestrial sources of pollution as well as providing estimates for air-water exchange to complete a robust mass balance for semi-volatile pollutants in an urban river.


Assuntos
Poluentes Atmosféricos , Poluentes Ambientais , Bifenilos Policlorados , Poluentes Químicos da Água , Bifenilos Policlorados/análise , Rios , Estações do Ano , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise , Poluentes Químicos da Água/análise , Poluentes Ambientais/análise , Água
4.
Environ Toxicol Chem ; 41(9): 2052-2064, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35698924

RESUMO

We describe the validation of a novel polymeric equilibrium passive sampler comprised of agarose gel with embedded activated carbon particles (ag+AC), to estimate aqueous monomethylmercury (MeHg) concentrations. Sampler behavior was tested using a combination of idealized media and realistic sediment microcosms. Isotherm bottle experiments with ag+AC polymers were conducted to constrain partitioning to these materials by various environmentally relevant species of MeHg bound to dissolved organic matter (MeHgDOM) across a range of sizes and character. Log of partitioning coefficients for passive samplers (Kps ) ranged from 1.98 ± 0.09 for MeHg bound to Suwannee River humic acid to 3.15 ± 0.05 for MeHg complexed with Upper Mississippi River natural organic matter. Reversible equilibrium exchange of environmentally relevant MeHg species was demonstrated through a series of dual isotope-labeled exchange experiments. Isotopically labeled MeHgDOM species approached equilibrium in the samplers over 14 days, while mass balance was maintained, providing strong evidence that the ag+AC polymer material is capable of equilibrium measurements of environmentally relevant MeHg species within a reasonable deployment time frame. Samplers deployed across the sediment-water interface of sediment microcosms estimated both overlying water and porewater MeHg concentrations within a factor of 2 to 4 of measured values, based on the average measured Kps values for species of MeHg bound to natural organic matter in the isotherm experiments. Taken together, our results indicate that ag+AC polymers, used as equilibrium samplers, can provide accurate MeHg estimations across many site chemistries, with a simple back-calculation based on a standardized Kps. Environ Toxicol Chem 2022;41:2052-2064. © 2022 SETAC.


Assuntos
Compostos de Metilmercúrio , Poluentes Químicos da Água , Carvão Vegetal , Monitoramento Ambiental/métodos , Sedimentos Geológicos , Polímeros , Água , Poluentes Químicos da Água/análise
5.
Environ Sci Technol ; 56(14): 10020-10029, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35759616

RESUMO

The freely dissolved concentration of hydrophobic pollutants in sediment porewater (Cpw) is a critical driver for exposure to aquatic organisms, bioaccumulation, toxicity, and flux across interfaces. In this research, we compared direct porewater extraction and passive sampling for Cpw measurements of a range of PCBs and PAHs in field-collected sediments. The direct water extraction method provided accurate quantification of Cpw for low to moderately hydrophobic PCB and PAH compounds (log Kow < 6.5) that compared well with independent measurements performed using four passive sampling methods. Direct water extraction was adequate to assess narcosis toxicity of PAHs to benthic organisms that is driven by the concentrations of low to moderately hydrophobic PAHs (naphthalene to chrysene), even for a hypothetical sediment that had a tenth of the PAH concentrations of the study sediments and was assessed to be nontoxic. Prediction of PCB bioaccumulation in benthic organisms agreed within 50% for all measurement methods, but it was apparent that for less contaminated sediments, the direct water extraction method would likely have detection limit challenges, especially for the strongly hydrophobic PCBs. To address the uncertainty of the Cpw measurement of the strongly hydrophobic compounds and naphthalene, a new extrapolation approach is demonstrated that can be applicable for both direct water extraction and passive sampling methods.


Assuntos
Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Naftalenos , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Água , Poluentes Químicos da Água/análise
6.
Environ Toxicol Chem ; 41(8): 1885-1902, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35512673

RESUMO

We evaluated the precision and accuracy of multilaboratory measurements for determining freely dissolved concentrations (Cfree ) of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in sediment porewater using polydimethylsiloxane (PDMS) and low-density polyethylene (LDPE) polymeric samplers. Four laboratories exposed performance reference compound (PRC) preloaded polymers to actively mixed and static ex situ sediment for approximately 1 month; two laboratories had longer exposures (2 and 3 months). For Cfree results, intralaboratory precision was high for single compounds (coefficient of variation 50% or less), and for most PAHs and PCBs interlaboratory variability was low (magnitude of difference was a factor of 2 or less) across polymers and exposure methods. Variability was higher for the most hydrophobic PAHs and PCBs, which were present at low concentrations and required larger PRC-based corrections, and also for naphthalene, likely due to differential volatilization losses between laboratories. Overall, intra- and interlaboratory variability between methods (PDMS vs. LDPE, actively mixed vs. static exposures) was low. The results that showed Cfree polymer equilibrium was achieved in approximately 1 month during active exposures, suggesting that the use of PRCs may be avoided for ex situ analysis using comparable active exposure; however, such ex situ testing may not reflect field conditions. Polymer-derived Cfree concentrations for most PCBs and PAHs were on average within a factor of 2 compared with concentrations in isolated porewater, which were directly measured by one laboratory; difference factors of up to 6 were observed for naphthalene and the most hydrophobic PAHs and PCBs. The Cfree results were similar for academic and private sector laboratories. The accuracy and precision that we demonstrate for determination of Cfree using polymer sampling are anticipated to increase regulatory acceptance and confidence in use of the method. Environ Toxicol Chem 2022;41:1885-1902. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Dimetilpolisiloxanos , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Humanos , Naftalenos , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Polietileno/química , Polímeros , Poluentes Químicos da Água/análise
7.
Chemosphere ; 287(Pt 3): 132239, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34543896

RESUMO

The sorption isotherms of polychlorinated biphenyls (PCBs) on carbons (coal based activated carbon named AC and hardwood derived biochar named BC) and natural organic matter (NOM) loaded carbons were examined and carbon-water partition coefficients (KC-W-PCB) were calculated. The purpose was to accurately predict the effectiveness of in-situ carbon treatments on the sediment impacted with hydrophobic organic chemicals (HOCs). For 1 month sorption, AC KC-W-PCB values were significantly higher than BC, corresponding to the much larger surface area (particularly in mesopores) for AC. BC KC-W-PCB values were correlated with PCB total surface area (TSA) and octanol-water partition coefficient (logKow). After loading with NOM, AC adsorption to PCBs strongly reduced and the fitted Freundlich exponents (n) decreased with increasing NOM level. However, NOM loading slightly impacted BC sorption and exhibited an opposite effect on BC n values. It is illustrated that the sorption mechanisms are different between AC and BC thereby the influences of NOM on sorption characteristics differ vastly. As the sorption time increased from 1 month to 6 months, an increase is observed in BC sorption extent but simultaneously NOM reduction effect on BC sorption increases, implying that more accurately evaluating BC application as an in-situ sorbent amendment for HOC impacted sediment need further investigation. On the contrary, AC adsorption attenuation caused by NOM coating greatly decreases over time, encouraging AC application as a sediment amendment.


Assuntos
Bifenilos Policlorados , Adsorção , Carvão Vegetal , Sedimentos Geológicos , Bifenilos Policlorados/análise
8.
Environ Toxicol Chem ; 40(8): 2145-2155, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33930216

RESUMO

Bioaccumulation of hydrophobic pollutants in an aquatic food web is governed by exposure concentrations in sediment and water phases and by complex trophic interactions among the various species. We demonstrate that biological interactions and exposure from the chemical environment can be deconvoluted for aquatic food webs to allow clearer assessments of the role of thermodynamic drivers from the sediment and surface water phases. We first demonstrate the feasibility of this deconvolution mathematically for hypothetical food webs with 3 and 4 interacting species and for more realistic real-world food webs with >10 species of aquatic organisms (i.e., the freshwater lake food web in Western Lake Erie [ON, Canada] and the marine food web in New Bedford Harbor [MA, USA]). Our results show both mathematically (for the simple food webs) and computationally (for the more complex food webs) that a deconvoluted food web model parameterized for site-specific conditions can predict the bioaccumulation of polychlorinated biphenyls in aquatic organisms same as existing complex food web models. The merit of this approach is that once the thermodynamic and biological contributions to food web bioaccumulation are computed for an ecosystem, the deconvoluted model provides a relatively simple approach for calculating concentrations of chemicals in organisms for a range of possible surface water and sedimentary concentrations. This approach is especially useful for calculating bioaccumulation of pollutants from freely dissolved concentrations measured using passive sampling devices or predicted by fate and transport models. The deconvoluted approach makes it possible to develop regulatory guidelines for a set of surface water and sediment (or porewater) concentration combinations for a water body that is able to achieve a risk-based target for fish concentration. Environ Toxicol Chem 2021;40:2145-2155. © 2021 SETAC.


Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Organismos Aquáticos , Biologia , Ecossistema , Monitoramento Ambiental/métodos , Peixes , Cadeia Alimentar , Lagos , Bifenilos Policlorados/análise , Termodinâmica , Água , Poluentes Químicos da Água/análise
9.
Nat Protoc ; 15(5): 1800-1828, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32313252

RESUMO

The freely dissolved concentration (Cfree) of hydrophobic organic chemicals in sediments and soils is considered the driver behind chemical bioavailability and, ultimately, toxic effects in benthic organisms. Therefore, quantifying Cfree, although challenging, is critical when assessing risks of contamination in field and spiked sediments and soils (e.g., when judging remediation necessity or interpreting results of toxicity assays performed for chemical safety assessments). Here, we provide a state-of-the-art passive sampling protocol for determining Cfree in sediment and soil samples. It represents an international consensus procedure, developed during a recent interlaboratory comparison study. The protocol describes the selection and preconditioning of the passive sampling polymer, critical incubation system component dimensions, equilibration and equilibrium condition confirmation, quantitative sampler extraction, quality assurance/control issues and final calculations of Cfree. The full procedure requires several weeks (depending on the sampler used) because of prolonged equilibration times. However, hands-on time, excluding chemical analysis, is approximately 3 d for a set of about 15 replicated samples.


Assuntos
Sedimentos Geológicos/análise , Poluentes do Solo/análise , Solo/química , Microextração em Fase Sólida/métodos , Poluição Ambiental , Interações Hidrofóbicas e Hidrofílicas
10.
Plant Cell ; 32(2): 486-507, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31757927

RESUMO

Nitrogen (N) limits crop yield, and improvement of N nutrition remains a key goal for crop research; one approach to improve N nutrition is identifying plant-interacting, N2-fixing microbes. Rhodotorula mucilaginosa JGTA-S1 is a basidiomycetous yeast endophyte of narrowleaf cattail (Typha angustifolia). JGTA-S1 could not convert nitrate or nitrite to ammonium but harbors diazotrophic (N2-fixing) endobacteria (Pseudomonas stutzeri) that allow JGTA-S1 to fix N2 and grow in a N-free environment; moreover, P. stutzeri dinitrogen reductase was transcribed in JGTA-S1 even under adequate N. Endobacteria-deficient JGTA-S1 had reduced fitness, which was restored by reintroducing P. stutzeri JGTA-S1 colonizes rice (Oryza sativa), significantly improving its growth, N content, and relative N-use efficiency. Endofungal P. stutzeri plays a significant role in increasing the biomass and ammonium content of rice treated with JGTA-S1; also, JGTA-S1 has better N2-fixing ability than free-living P. stutzeri and provides fixed N to the plant. Genes involved in N metabolism, N transporters, and NODULE INCEPTION-like transcription factors were upregulated in rice roots within 24 h of JGTA-S1 treatment. In association with rice, JGTA-S1 has a filamentous phase and P. stutzeri only penetrated filamentous JGTA-S1. Together, these results demonstrate an interkingdom interaction that improves rice N nutrition.


Assuntos
Bactérias/metabolismo , Basidiomycota/metabolismo , Fixação de Nitrogênio/fisiologia , Nitrogênio/metabolismo , Oryza/metabolismo , Oryza/microbiologia , Rhodotorula/metabolismo , Compostos de Amônio , Basidiomycota/crescimento & desenvolvimento , Endófitos/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/genética , Oryza/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Pseudomonas/metabolismo , Pseudomonas stutzeri/metabolismo , Rhodotorula/crescimento & desenvolvimento , Rhodotorula/isolamento & purificação , Simbiose , Transcriptoma
11.
Environ Toxicol Chem ; 39(2): 323-334, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31692059

RESUMO

We explored the concept of equilibrium passive sampling for methylmercury (MeHg) using the strategy developed for hydrophobic organic chemicals. Passive sampling should allow prediction of the concentration of the chemically labile fraction of MeHg in sediment porewaters based on equilibrium partitioning into the sampler, without modeling diffusion rates through the sampler material. Our goals were to identify sampler materials with the potential to mimic MeHg partitioning into animals and sediments and provide reversible sorption in a time frame appropriate for in situ samplers. Candidate materials tested included a range of polymers embedded with suitable sorbents for MeHg. The most promising were activated carbon (AC) embedded in agarose, thiol-self-assembled monolayers on mesoporous supports embedded in agarose, and cysteine-functionalized polyethylene terephthalate, which yielded log sampler-water partition coefficients of 2.8 to 5 for MeHgOH and MeHg complexed with dissolved organic matter (Suwannee River humic acid). Sampler equilibration time in sediments was approximately 1 to 2 wk. Investigation of the MeHg accumulation mechanism by AC embedded in agarose suggested that sampling was kinetically influenced by MeHg interactions with AC particles and not limited by diffusion through the gel for this material. Also, AC exhibited relatively rapid desorption of Hg and MeHg, indicating that this sorbent is capable of reversible, equilibrium measurements. In sediment:water microcosms, porewater concentrations made with isotherm-calibrated passive samplers agreed within a factor of 2 (unamended sediment) or 4 (AC-amended sediment) with directly measured concentrations. The present study demonstrates a potential new approach to passive sampling of MeHg. Environ Toxicol Chem 2020;39:323-334. © 2019 SETAC.


Assuntos
Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Compostos de Metilmercúrio/análise , Solo/química , Poluentes Químicos da Água/análise , Animais , Carvão Vegetal/química , Substâncias Húmicas/análise , Interações Hidrofóbicas e Hidrofílicas , Mercúrio/análise , Rios/química
12.
Environ Toxicol Chem ; 38(10): 2326-2336, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31233239

RESUMO

Activated carbon-amended bed sediments reduced total polychlorinated biphenyl (PCB) accumulation in 3 functionally different marine species, sandworms (Alitta virens), hard clams (Mercenaria mercenaria), and sheepshead minnows (Cyprinodon variegatus), during both clean and contaminated ongoing sediment inputs. Mesocosm experiments were conducted for 90 d to evaluate native, field-aged bed sediment PCBs, and ongoing input PCBs added 3 times a week. Simulated in situ remediation applied an activated carbon dose equal to the native organic carbon content that was premixed into the bed sediment for 1 mo. The highest bioaccumulation of native PCBs was in worms that remained in and directly ingested the sediment, whereas the highest bioaccumulation of the input PCBs was in fish that were exposed to the water column. When periodic PCB-contaminated sediment inputs were introduced to the water column, the activated carbon remedy had minimal effect on the input PCBs, whereas the native bed PCBs still dominated bioaccumulation in the control (no activated carbon). Therefore, remediation of only the local bedded sediment in environmental systems with ongoing contaminant inputs may have lower efficacy for fish and other pelagic and epibenthic organisms. While ongoing inputs continue to obscure remedial outcomes at contaminated sediment sites, the present study showed clear effectiveness of activated carbon amendment remediation on native PCBs despite these inputs but no remediation effectiveness for the input-associated PCBs (at least within the present study duration). Environ Toxicol Chem 2019;38:2326-2336. Published 2019 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.


Assuntos
Carvão Vegetal/química , Monitoramento Ambiental , Sedimentos Geológicos/química , Bifenilos Policlorados/análise , Animais , Bioacumulação , Biodegradação Ambiental , Biodiversidade , Bivalves/metabolismo , Peixes/metabolismo , Lipídeos/análise , Poliquetos/metabolismo , Especificidade da Espécie
14.
Environ Sci Technol ; 53(13): 7432-7441, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31132852

RESUMO

While microbial dechlorination of polychlorinated biphenyls (PCBs) has been observed in sediments over the last 3 decades, translation to the field has been difficult due to a lack of a clear understanding of the kinetic limitations. To address this issue, the present study used passive dosing/sampling to accurately measure the biological rate of dechlorination of 2,3,4,5-tetrachlorobiphenyl (PCB 61) to 2,3,5-trichlorobiphenyl (PCB 23) by an organohalide-respiring bacterium, Dehalobium chlorocoercia (DF-1). The biological rates were measured over an environmentally relevant concentration range of 1-50 ng/L of freely dissolved concentrations with and without the presence of sediment in bench-scale microcosm studies. The rate of dechlorination was found to be linearly dependent on the freely dissolved concentration of PCB 61 both in sediment and in sediment-free microcosms. The observed rate of dechlorination in sediment microcosms could be predicted within a factor of 2 based on the kinetics measured in sediment-free microcosms. A threshold for dechlorination was not observed down to an aqueous concentration of about 1 ng/L PCB 61. We demonstrate that with the combination of an accurate measurement of the aqueous-phase dechlorination kinetics and an understanding of the site-specific partitioning characteristics, it is possible to predict PCB microbial dechlorination in sediments.


Assuntos
Bifenilos Policlorados , Poluentes Químicos da Água , Biodegradação Ambiental , Cloro , Sedimentos Geológicos , Cinética
15.
Environ Sci Process Impacts ; 21(3): 485-496, 2019 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-30724289

RESUMO

Activated carbon (AC) amendments have shown promise in reducing inorganic mercury (Hg(ii) complexes, "Hg") and methylmercury (MeHg) risk in contaminated soils. However, the effectiveness of AC in Hg and MeHg immobilization has varied among studies, suggesting that site biogeochemistry might dictate efficacy. In this study, we examined the effect of dissolved organic matter (DOM) on MeHg and Hg sorption to AC. We evaluated the impact of Suwannee River Humic Acid (SRHA) on sorption to AC directly using an isotherm approach and in a soil/AC mixture using slurry microcosms. Aqueous sorption coefficients to AC (log KAC) for Hg-SRHA and MeHg-SRHA complexes were one to two orders of magnitude lower (Hg-SRHA = 4.53, MeHgSRHA = 4.35) than those for chloride complexes (HgCl2 = 6.55, MeHgCl = 4.90) and more closely resembled the log KAC of SRHA (3.64). In anoxic, sulfidic soil slurries, the KAC for sulfide species appeared stronger than for chloride or SRHA species for both Hg and MeHg. AC significantly reduced porewater concentrations of both ambient MeHg and a fresh Me199Hg spike, and the addition of up to 60 mg L-1 SRHA did not reduce sorption to AC. The AC also reduced ambient Hg and 201Hg porewater concentrations, but as SRHA concentration increased, the magnitude of solid phase sorption decreased. Speciation modeling revealed that SRHA may have impacted Hg distribution to the solid phase by reducing HgS precipitation. This study highlights the need for site-specific evaluation of AC efficacy and the value in developing biogeochemical models of AC performance for Hg control.


Assuntos
Carvão Vegetal/química , Substâncias Húmicas/análise , Mercúrio/análise , Compostos de Metilmercúrio/análise , Solo/química , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Rios/química , Sulfetos/química
16.
Environ Sci Technol ; 53(5): 2626-2634, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30698958

RESUMO

A combined approach involving microbial bioaugmentation and enhanced sorption was demonstrated to be effective for in situ treatment of polychlorinated biphenyls (PCBs). A pilot study was conducted for 409 days on PCB impacted sediments in four 400 m2 plots located in a watershed drainage pond in Quantico, VA. Treatments with activated carbon (AC) agglomerate bioamended with PCB dechlorinating and oxidizing bacteria decreased the PCB concentration in the top 7.5 cm by up to 52% and the aqueous concentrations of tri- to nonachlorobiphenyl PCB congeners by as much as 95%. Coplanar congeners decreased by up to 80% in sediment and were undetectable in the porewater. There was no significant decrease in PCB concentrations in non-bioamended plots with or without AC. All homologue groups decreased in bioamended sediment and porewater, indicating that both anaerobic dechlorination and aerobic degradation occurred concurrently. The titer of the bioamendments based on quantitative PCR of functional marker genes decreased but were still detectable after 409 days, whereas indigenous microbial diversity was not significantly different between sites, time points, or depths, indicating that bioaugmentation and the addition of activated carbon did not significantly alter total microbial diversity. In situ treatment of PCBs using an AC agglomerate as a delivery system for bioamendments is particularly well-suited for environmentally sensitive sites where there is a need to reduce exposure of the aquatic food web to sediment-bound PCBs with minimal disruption to the environment.


Assuntos
Bifenilos Policlorados , Biodegradação Ambiental , Carvão Vegetal , Sedimentos Geológicos , Projetos Piloto
17.
Environ Pollut ; 246: 390-397, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30577007

RESUMO

Despite the ban on new manufacture and commercial use of PCBs, municipal sewer systems continue to serve as ongoing secondary sources for contamination in receiving water bodies. Ongoing PCB sources have made it difficult to achieve desired recovery after implementation of sediment cleanup efforts. We report on a 16-month surveillance to determine the inputs, fate, and export of PCBs within a municipal waste collection/treatment system by strategic sampling of the freely-dissolved and biosolids-associated PCBs. The total PCBs entering the treatment plant was found to be 170 g/day of which 100 g/day exited the plant associated with the biosolids and 5.2 g/day was discharged in the form of freely-dissolved PCBs in the effluent. A net loss of 68 g/day was calculated for the plant, attributable to volatilization and biodegradation. Freely dissolved PCBs in the treated effluent was an order of magnitude higher than the water quality criteria for the protection of human health through fish consumption and found to be a major contributor to the dissolved concentration in the receiving river. Predicted bioaccumulation in fish from dissolved PCBs in the effluent exceeded the threshold for human consumption. The biosolids, currently land-applied as fertilizer, contained an average PCB concentration of 760 µg/kg. The sludge produced in this treatment plant is processed in large anaerobic digesters and changes to the homolog distribution point to some microbial dechlorination. Application of biosolids to clean agricultural soil resulted in a 6-fold increase in PCB levels in the earthworm E. fetida which could be eliminated by the amendment of 1% by weight of activated carbon.


Assuntos
Monitoramento Ambiental , Poluentes Ambientais/análise , Bifenilos Policlorados/análise , Eliminação de Resíduos Líquidos/estatística & dados numéricos , Animais , Peixes/metabolismo , Humanos , Oligoquetos/metabolismo , Rios/química , Esgotos/química , Esgotos/microbiologia , Solo/química
18.
Environ Toxicol Chem ; 37(9): 2487-2495, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29978585

RESUMO

Polymeric passive sampling devices are increasingly used to measure low-level, freely dissolved concentrations of hydrophobic organic contaminants in environmental waters. A range of polymers have been used for this purpose, and several different methods of accounting for nonequilibrium using performance reference compounds (PRCs) have been proposed. The present study explores the practical impacts of these decisions in an applied context using results from a multiyear passive sampling surveillance of polychlorinated biphenyl concentrations in sediment porewater at a contaminated marsh amended with activated carbon (AC) sorbent materials. In a series of 5 sampling events spanning almost 2 yr, we deployed polyoxymethylene and polyethylene samplers and calculated porewater concentrations with 5 different PRC adjustment methods. The results provide a basis for evaluating amendment performance by showing reductions of 34 to 97% in amended sediment porewater concentrations. They also provide a quantitative underpinning for discussions of the differences between sampling polymers, selection of PRCs, generation of high-resolution vertical profiles of porewater concentrations, and a comparison of PRC adjustment methods. For unamended sediment, older methods based on first-order kinetics agreed well with a recently developed method based on diffusion into and out of sediment beds. However, the sediment diffusion method did not work well for the sediments amended with AC. Environ Toxicol Chem 2018;37:2487-2495. © 2018 SETAC.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Bifenilos Policlorados/análise , Polímeros/química , Poluentes Químicos da Água/análise , Adsorção , Carvão Vegetal/química , Monitoramento Ambiental/instrumentação , Interações Hidrofóbicas e Hidrofílicas , New Jersey , Polietileno/química , Resinas Sintéticas/química , Rios/química
19.
Environ Toxicol Chem ; 37(9): 2496-2505, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29870109

RESUMO

In situ amendment of sediments with highly sorbent materials like activated carbon (AC) is an increasingly viable strategy to reduce the bioavailability of persistent, sediment-associated contaminants to benthic communities. Because in situ sediment remediation is an emerging strategy, much remains to be learned about the field conditions under which amendments can be effective, the resilience of amendment materials toward extreme weather conditions, and the optimal design of engineered applications. We report the results of a multiyear, pilot-scale field investigation designed to measure the persistence and efficacy of AC amendments to reduce the bioavailability of polychlorinated biphenyls (PCBs) in an intertidal Phragmites marsh. The amendments tested were granular AC (GAC), GAC with a layer of sand, and a pelletized fine AC. Key metrics presented include vertically resolved black carbon concentrations in sediment and PCB concentrations in sediment, porewater, and several invertebrate species. The results demonstrate that all 3 amendments withstood Hurricane Sandy and remained in place for the duration of the study, successfully reducing porewater PCB concentrations by 34 to 97%. Reductions in invertebrate bioaccumulation were observed in all amendment scenarios, with pelletized fine AC producing the most pronounced effect. The present findings support the use of engineered AC amendments in intertidal marshes and can be used to inform amendment design, delivery, and monitoring at other contaminated sediment sites. Environ Toxicol Chem 2018;37:2496-2505. © 2018 SETAC.


Assuntos
Carvão Vegetal/química , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Poaceae/efeitos dos fármacos , Bifenilos Policlorados/análise , Áreas Alagadas , Disponibilidade Biológica , New Jersey , Poaceae/metabolismo
20.
Chemosphere ; 203: 179-187, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29614411

RESUMO

A bench scale study was conducted to evaluate the effectiveness of in situ amendments to reduce the bioavailability of pollutants in sediments from a site impacted with polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and cadmium. The amendments tested included fine and coarse coal-based activated carbons (AC), an enhanced pinewood derived biochar (EPB), organoclay, and coke dosed at 5% of sediment dry weight. Strong reductions in total PCB porewater concentrations were observed in sediments amended with the fine AC (94.9-99.5%) and EPB (99.6-99.8%). More modest reductions were observed for the coarse AC, organoclay, and coke. Strong reductions in porewater PCB concentrations were reflected in reductions in total PCB bioaccumulation in fresh water oligochaetes for both the fine AC (91.9-96.0%) and EPB (96.1-96.3%). Total PAH porewater concentrations were also greatly reduced by the fine AC (>96.1%) and EPB (>97.8%) treatments. EPB matched or slightly outperformed the fine AC throughout the study, despite sorption data indicating a much stronger affinity of PCBs for the fine AC. Modeling EPB and fine AC effectiveness on other sediments confirmed the high effectiveness of the EPB was due to the very low final porewater concentrations and differences in the native bioavailability between sediments. However, low bulk density and poor settling characteristics make biochars difficult to apply in an aquatic setting. Neither the EPB nor the fine AC amendments were able to significantly reduce Cd bioavailability.


Assuntos
Carvão Vegetal/farmacocinética , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Disponibilidade Biológica , Cádmio/análise , Cádmio/farmacocinética , Coque , Água Doce , Bifenilos Policlorados/análise , Bifenilos Policlorados/farmacocinética , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/farmacocinética , Poluentes Químicos da Água/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA