Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 26(29): 29704-29721, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31407260

RESUMO

Coastal marine areas are highly vulnerable to the exposure to various types of stressors and impact of chemical pollution resulting from increasing anthropogenic activities, namely pollution by metals and polycyclic aromatic hydrocarbons (PAHs). To assess ecosystem quality and functions, biomarkers can provide information about the presence and adverse effects of pollutants. Accordingly, the present study was conducted to evaluate the chronic (28 days) biologic effects of putatively contaminated sediments from the Zarzis area, located in the south of the Gulf of Gabes on the Southern Tunisian coast, on the marine flatfish Solea senegalensis. Sediments were collected at three sampling sites, impacted by wastewater discharges, aquaculture activities, and industrial contamination, and then surveyed for metals (Cd, Cu, Cr, Hg, Zn, and Pb) and organic contaminants (polycyclic aromatic hydrocarbons). The quantified biomarkers involved the determination of oxidative stress, phase II metabolism, and the extent of lipid peroxidation (catalase, CAT; glutathione peroxidase activity: total and selenium-dependent, T-GPx and Se-GPx; activities of glutathione-S-transferases, GSTs; levels of lipid peroxidation, by means of the thiobarbituric acid reactive substances assay, TBARS) and neurotoxicity (activity of acetylcholinesterase, AChE). S. senegalensis exposed to potentially contaminated sediments, collected near the aquaculture facility, presented the highest values for the generality of biomarkers tested, and a significant inhibition of AChE activity. A few lesions have been also recorded in the gills and liver tissues of S. senegalensis following chronic exposure. However, the observed lesions in gills (e.g., epithelial lifting, lamellar fusion, gills hyperplasia and hypertrophy, and leukocyte infiltration) and liver (cytoplasmic vacuolation, enlargement of sinusoids, foci of necrosis, and eosinophilic bodies) were of minimal pathological importance and/or low prevalence that did not significantly affect the weighted histopathological indices. Finally, the biological responses evidenced by this flatfish can be potentially caused by metal and PAH pollution occurring in specific areas in the southeast of Tunisia. The type and extent of the observed biochemical alterations strongly suggest that the contaminated sediments from the surveyed areas could cause early adverse biological effects on exposed biota.


Assuntos
Linguados/fisiologia , Sedimentos Geológicos/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Ecossistema , Ecotoxicologia , Monitoramento Ambiental/métodos , Enzimas/metabolismo , Sedimentos Geológicos/química , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Brânquias/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Metais/análise , Estresse Oxidativo/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/análise , Tunísia , Águas Residuárias
2.
Arch Environ Contam Toxicol ; 76(4): 678-691, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30852624

RESUMO

Toxicity caused by exposure to pollutants from marine sediments is a consequence of the interaction between biota and xenobiotics most frequently released by anthropogenic activities. The present work intended to characterize the toxicity of natural sediments putatively impacted by distinct human activities, collected at several sites located in the south of the Gulf of Gabes, Zarzis area, Tunisia. The selected toxicity criteria were analysed following ecologically relevant test conditions. Organisms of the polychaete species Hediste diversicolor were chronically exposed (28 days) to the mentioned sediments. Toxicity endpoints were biomarkers involved in the toxic response to common anthropogenic chemicals, namely neurotoxic (acetylcholinesterase), anti-oxidant (catalase, glutathione peroxidase), metabolic (glutathione S-transferases) enzymatic activities, and oxidative damage (lipid peroxidation, TBARS assay). The chemical characterization of sediments showed that the samples collected from the site near an aquaculture facility were highly contaminated by heavy metals (Cd, Cu, Cr, Hg, Pb, and Zn) and polycyclic aromatic hydrocarbons (fluorene, phenanthrene, anthracene, fluoranthene and pyrene). H. diversicolor individuals exposed to the sediments from this specific site showed the highest values among all tested biomarkers, suggesting that these organisms were possibly under a pro-oxidative stress condition potentially promoted by anthropogenic pollution. Moreover, it was possible to conclude that individuals of the polychaete species H. diversicolor responded to the chronic exposure to potentially contaminated sediments from the southeast coast of Tunisia, eliciting adaptive responses of significant biological meaning.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Metais Pesados/toxicidade , Poliquetos/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Metais Pesados/análise , Estresse Oxidativo/efeitos dos fármacos , Poliquetos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/análise , Tunísia , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA