Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomed Pharmacother ; 173: 116380, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447450

RESUMO

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons. Considerable evidence indicates that early skeletal muscle atrophy plays a crucial role in the disease pathogenesis, leading to an altered muscle-motor neuron crosstalk that, in turn, may contribute to motor neuron degeneration. Currently, there is no effective treatment for ALS, highlighting the need to dig deeper into the pathological mechanisms for developing innovative therapeutic strategies. FM19G11 is a novel drug able to modulate the global cellular metabolism, but its effects on ALS skeletal muscle atrophy and mitochondrial metabolism have never been evaluated, yet. This study investigated whether FM19G11-loaded nanoparticles (NPs) may affect the bioenergetic status in myoblasts isolated from G93A-SOD1 mice at different disease stages. We found that FM19G1-loaded NP treatment was able to increase transcriptional levels of Akt1, Akt3, Mef2a, Mef2c and Ucp2, which are key genes associated with cell proliferation (Akt1, Akt3), muscle differentiation (Mef2c), and mitochondrial activity (Ucp2), in G93A-SOD1 myoblasts. These cells also showed a significant reduction of mitochondrial area and networks, in addition to decreased ROS production after treatment with FM19G11-loaded NPs, suggesting a ROS clearance upon the amelioration of mitochondrial dynamics. Our overall findings demonstrate a significant impact of FM19G11-loaded NPs on muscle cell function and bioenergetic status in G93A-SOD1 myoblasts, thus promising to open new avenues towards possible adoption of FM19G11-based nanotherapies to slow muscle degeneration in the frame of ALS and muscle disorders.


Assuntos
Esclerose Lateral Amiotrófica , Benzamidas , Nanopartículas , Doenças Neurodegenerativas , Camundongos , Animais , Superóxido Dismutase-1/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Esclerose Lateral Amiotrófica/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Mioblastos/metabolismo , Atrofia/patologia , Camundongos Transgênicos , Modelos Animais de Doenças , Superóxido Dismutase/metabolismo
2.
PLoS Biol ; 22(3): e3002503, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38478490

RESUMO

Cell culture devices, such as microwells and microfluidic chips, are designed to increase the complexity of cell-based models while retaining control over culture conditions and have become indispensable platforms for biological systems modelling. From microtopography, microwells, plating devices, and microfluidic systems to larger constructs such as live imaging chamber slides, a wide variety of culture devices with different geometries have become indispensable in biology laboratories. However, while their application in biological projects is increasing exponentially, due to a combination of the techniques, equipment and tools required for their manufacture, and the expertise necessary, biological and biomedical labs tend more often to rely on already made devices. Indeed, commercially developed devices are available for a variety of applications but are often costly and, importantly, lack the potential for customisation by each individual lab. The last point is quite crucial, as often experiments in wet labs are adapted to whichever design is already available rather than designing and fabricating custom systems that perfectly fit the biological question. This combination of factors still restricts widespread application of microfabricated custom devices in most biological wet labs. Capitalising on recent advances in bioengineering and microfabrication aimed at solving these issues, and taking advantage of low-cost, high-resolution desktop resin 3D printers combined with PDMS soft lithography, we have developed an optimised a low-cost and highly reproducible microfabrication pipeline. This is thought specifically for biomedical and biological wet labs with not prior experience in the field, which will enable them to generate a wide variety of customisable devices for cell culture and tissue engineering in an easy, fast reproducible way for a fraction of the cost of conventional microfabrication or commercial alternatives. This protocol is designed specifically to be a resource for biological labs with limited expertise in those techniques and enables the manufacture of complex devices across the µm to cm scale. We provide a ready-to-go pipeline for the efficient treatment of resin-based 3D-printed constructs for PDMS curing, using a combination of polymerisation steps, washes, and surface treatments. Together with the extensive characterisation of the fabrication pipeline, we show the utilisation of this system to a variety of applications and use cases relevant to biological experiments, ranging from micro topographies for cell alignments to complex multipart hydrogel culturing systems. This methodology can be easily adopted by any wet lab, irrespective of prior expertise or resource availability and will enable the wide adoption of tailored microfabricated devices across many fields of biology.


Assuntos
Técnicas de Cultura de Células , Microtecnologia , Microfluídica/métodos , Impressão Tridimensional , Dispositivos Lab-On-A-Chip
3.
Int J Mol Sci ; 24(5)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36902041

RESUMO

Amyotrophic lateral sclerosis (ALS) is characterized by the progressive, irreversible loss of upper and lower motor neurons (UMNs, LMNs). MN axonal dysfunctions are emerging as relevant pathogenic events since the early ALS stages. However, the exact molecular mechanisms leading to MN axon degeneration in ALS still need to be clarified. MicroRNA (miRNA) dysregulation plays a critical role in the pathogenesis of neuromuscular diseases. These molecules represent promising biomarkers for these conditions since their expression in body fluids consistently reflects distinct pathophysiological states. Mir-146a has been reported to modulate the expression of the NFL gene, encoding the light chain of the neurofilament (NFL) protein, a recognized biomarker for ALS. Here, we analyzed miR-146a and Nfl expression in the sciatic nerve of G93A-SOD1 ALS mice during disease progression. The miRNA was also analyzed in the serum of affected mice and human patients, the last stratified relying on the predominant UMN or LMN clinical signs. We revealed a significant miR-146a increase and Nfl expression decrease in G93A-SOD1 peripheral nerve. In the serum of both ALS mice and human patients, the miRNA levels were reduced, discriminating UMN-predominant patients from the LMN ones. Our findings suggest a miR-146a contribution to peripheral axon impairment and its potential role as a diagnostic and prognostic biomarker for ALS.


Assuntos
Esclerose Lateral Amiotrófica , MicroRNAs , Degeneração Neural , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/diagnóstico , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Biomarcadores/sangue , Biomarcadores/metabolismo , Modelos Animais de Doenças , Camundongos Transgênicos , MicroRNAs/sangue , MicroRNAs/genética , MicroRNAs/metabolismo , Degeneração Neural/diagnóstico , Degeneração Neural/genética , Degeneração Neural/metabolismo , Nervos Periféricos/patologia , Superóxido Dismutase-1/genética , Axônios/patologia , Proteínas de Neurofilamentos , Diagnóstico Precoce , Progressão da Doença
4.
J Mater Sci Mater Med ; 34(1): 3, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36586059

RESUMO

Cell microencapsulation has been utilized for years as a means of cell shielding from the external environment while facilitating the transport of gases, general metabolites, and secretory bioactive molecules at once. In this light, hydrogels may support the structural integrity and functionality of encapsulated biologics whereas ensuring cell viability and function and releasing potential therapeutic factors once in situ. In this work, we describe a straightforward strategy to fabricate silk fibroin (SF) microgels (µgels) and encapsulate cells into them. SF µgels (size ≈ 200 µm) were obtained through ultrasonication-induced gelation of SF in a water-oil emulsion phase. A thorough physicochemical (SEM analysis, and FT-IR) and mechanical (microindentation tests) characterization of SF µgels were carried out to assess their nanostructure, porosity, and stiffness. SF µgels were used to encapsulate and culture L929 and primary myoblasts. Interestingly, SF µgels showed a selective release of relatively small proteins (e.g., VEGF, molecular weight, MW = 40 kDa) by the encapsulated primary myoblasts, while bigger (macro)molecules (MW = 160 kDa) were hampered to diffusing through the µgels. This article provided the groundwork to expand the use of SF hydrogels into a versatile platform for encapsulating relevant cells able to release paracrine factors potentially regulating tissue and/or organ functions, thus promoting their regeneration.


Assuntos
Fibroínas , Microgéis , Fibroínas/química , Encapsulamento de Células , Espectroscopia de Infravermelho com Transformada de Fourier , Hidrogéis/química , Seda
5.
Front Cell Neurosci ; 16: 982760, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36035258

RESUMO

Background and objectives: Multisystem involvement in spinal muscular atrophy (SMA) is gaining prominence since different therapeutic options are emerging, making the way for new SMA phenotypes and consequent challenges in clinical care. Defective immune organs have been found in preclinical models of SMA, suggesting an involvement of the immune system in the disease. However, the immune state in SMA patients has not been investigated so far. Here, we aimed to evaluate the innate and adaptive immunity pattern in SMA type 1 to type 3 patients, before and after nusinersen treatment. Methods: Twenty one pediatric SMA type 1, 2, and 3 patients and 12 adult SMA type 2 and 3 patients were included in this single-center retrospective study. A Bio-Plex Pro-Human Cytokine 13-plex Immunoassay was used to measure cytokines in serum and cerebrospinal fluid (CSF) of the study cohort before and after 6 months of therapy with nusinersen. Results: We detected a significant increase in IL-1ß, IL-4, IL-6, IL-10, IFN-γ, IL-17A, IL-22, IL-23, IL-31, and IL-33, in serum of pediatric and adult SMA patients at baseline, compared to pediatric reference ranges and to adult healthy controls. Pediatric patients showed also a significant increase in TNF-α and IL-17F levels at baseline. IL-4, IFN-γ, Il-22, IL-23, and IL-33 decreased in serum of pediatric SMA patients after 6 months of therapy when compared to baseline. A significant decrease in IL-4, IL-6, INF-γ, and IL-17A was detected in serum of adult SMA patients after treatment. CSF of both pediatric and adult SMA patients displayed detectable levels of all cytokines with no significant differences after 6 months of treatment with nusinersen. Notably, a higher baseline expression of IL-23 in serum correlated with a worse motor function outcome after treatment in pediatric patients. Moreover, after 6 months of treatment, patients presenting a higher IL-10 concentration in serum showed a better Hammersmith Functional Motor Scale Expanded (HFMSE) score. Discussion: Pediatric and adult SMA patients show an inflammatory signature in serum that is reduced upon SMN2 modulating treatment, and the presence of inflammatory mediators in CSF. Our findings enhance SMA knowledge with potential clinical and therapeutic implications.

6.
Int J Mol Sci ; 22(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073630

RESUMO

Motor neuron diseases (MNDs) are neurodegenerative disorders characterized by upper and/or lower MN loss. MNDs include amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), and spinal and bulbar muscular atrophy (SBMA). Despite variability in onset, progression, and genetics, they share a common skeletal muscle involvement, suggesting that it could be a primary site for MND pathogenesis. Due to the key role of muscle-specific microRNAs (myomiRs) in skeletal muscle development, by real-time PCR we investigated the expression of miR-206, miR-133a, miR-133b, and miR-1, and their target genes, in G93A-SOD1 ALS, Δ7SMA, and KI-SBMA mouse muscle during disease progression. Further, we analyzed their expression in serum of SOD1-mutated ALS, SMA, and SBMA patients, to demonstrate myomiR role as noninvasive biomarkers. Our data showed a dysregulation of myomiRs and their targets, in ALS, SMA, and SBMA mice, revealing a common pathogenic feature associated with muscle impairment. A similar myomiR signature was observed in patients' sera. In particular, an up-regulation of miR-206 was identified in both mouse muscle and serum of human patients. Our overall findings highlight the role of myomiRs as promising biomarkers in ALS, SMA, and SBMA. Further investigations are needed to explore the potential of myomiRs as therapeutic targets for MND treatment.


Assuntos
Esclerose Lateral Amiotrófica , Atrofia Bulboespinal Ligada ao X , MicroRNAs , Mutação de Sentido Incorreto , Superóxido Dismutase-1 , Superóxido Dismutase , Substituição de Aminoácidos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Animais , Atrofia Bulboespinal Ligada ao X/genética , Atrofia Bulboespinal Ligada ao X/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , MicroRNAs/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
7.
J Cell Sci ; 134(12)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34137441

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by loss of both upper and lower motor neurons (MNs). The main clinical features of ALS are motor function impairment, progressive muscle weakness, muscle atrophy and, ultimately, paralysis. Intrinsic skeletal muscle deterioration plays a crucial role in the disease and contributes to ALS progression. Currently, there are no effective treatments for ALS, highlighting the need to obtain a deeper understanding of the molecular events underlying degeneration of both MNs and muscle tissue, with the aim of developing successful therapies. Muscle tissue is enriched in a group of microRNAs called myomiRs, which are effective regulators of muscle homeostasis, plasticity and myogenesis in both physiological and pathological conditions. After providing an overview of ALS pathophysiology, with a focus on the role of skeletal muscle, we review the current literature on myomiR network dysregulation as a contributing factor to myogenic perturbations and muscle atrophy in ALS. We argue that, in view of their critical regulatory function at the interface between MNs and skeletal muscle fiber, myomiRs are worthy of further investigation as potential molecular targets of therapeutic strategies to improve ALS symptoms and counteract disease progression.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Esclerose Lateral Amiotrófica/genética , Homeostase , Humanos , Neurônios Motores , Músculo Esquelético
8.
Biomedicines ; 8(2)2020 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-31991852

RESUMO

Spinal muscular atrophy (SMA) is an autosomal recessive disorder caused by mutations in survival motor neuron (SMN) 1 gene, resulting in a truncated SMN protein responsible for degeneration of brain stem and spinal motor neurons. The paralogous SMN2 gene partially compensates full-length SMN protein production, mitigating the phenotype. Antisense oligonucleotide nusinersen (Spinraza®) enhances SMN2 gene expression. SMN is involved in RNA metabolism and biogenesis of microRNA (miRNA), key gene expression modulators, whose dysregulation contributes to neuromuscular diseases. They are stable in body fluids and may reflect distinct pathophysiological states, thus acting as promising biomarkers. Muscle-specific miRNAs (myomiRs) as biomarkers for clinical use in SMA have not been investigated yet. Here, we analyzed the expression of miR-133a, -133b, -206 and -1, in serum of 21 infantile SMA patients at baseline and after 6 months of nusinersen treatment, and correlated molecular data with response to therapy evaluated by the Hammersmith Functional Motor Scale Expanded (HFMSE). Our results demonstrate that myomiR serological levels decrease over disease course upon nusinersen treatment. Notably, miR-133a reduction predicted patients' response to therapy. Our findings identify myomiRs as potential biomarkers to monitor disease progression and therapeutic response in SMA patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA