RESUMO
Despite increasing knowledge about small extracellular vesicle (sEV) composition and functions in cell-cell communication, the mechanism behind their biogenesis remains unclear. Here, we reveal for the first time that sEV biogenesis and release into the microenvironment are tightly connected with another important organelle, Lipid Droplets (LDs). The correlation was observed in several human cancer cell lines as well as patient-derived colorectal cancer stem cells (CR-CSCs). Our results demonstrated that external stimuli such as radiation, pH, hypoxia or lipid-interfering drugs, known to affect the number of LDs/cell, similarly influenced sEV secretion. Importantly, through multiple omics data, at both mRNA and protein levels, we revealed RAB5C as a potential important molecular player behind this organelle connection. Altogether, the potential to fine-tune sEV biogenesis by targeting LDs could significantly impact the amount, cargos and properties of these sEVs, opening new clinical perspectives.
RESUMO
Glioblastoma (GBM) is a severe form of brain tumor that has a high fatality rate. It grows aggressively and most of the time results in resistance to traditional treatments like chemo- and radiotherapy and surgery. Biodiversity, beyond representing a big resource for human well-being, provides several natural compounds that have shown great potential as anticancer drugs. Many of them are being extensively researched and significantly slow GBM progression by reducing the proliferation rate, migration, and inflammation and also by modulating oxidative stress. Here, the use of some natural compounds, such as Allium lusitanicum, Succisa pratensis, and Dianthus superbus, was explored to tackle GBM; they showed their impact on cell number reduction, which was partially given by cell cycle quiescence. Furthermore, a reduced cell migration ability was reported, accomplished by morphological cytoskeleton changes, which even highlighted a mesenchymal-epithelial transition. Furthermore, metabolic studies showed an induced cell oxidative stress modulation and a massive metabolic rearrangement. Therefore, a new therapeutic option was suggested to overcome the limitations of conventional treatments and thereby improve patient outcomes.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Movimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Estresse Oxidativo/efeitos dos fármacos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Antineoplásicos/farmacologiaRESUMO
BACKGROUND: Melanoma progression is based on a close interaction between cancer cells and immune cells in the tumor microenvironment (TME). Thus, a better understanding of the mechanisms controlling TME dynamics and composition will help improve the management of this dismal disease. Work from our and other groups has reported the requirement of an active Hedgehog-GLI (HH-GLI) signaling for melanoma growth and stemness. However, the role of the downstream GLI1 transcription factor in melanoma TME remains largely unexplored. METHODS: The immune-modulatory activity of GLI1 was evaluated in a syngeneic B16F10 melanoma mouse model assessing immune populations by flow cytometry. Murine polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) were differentiated from bone marrow cells and their immunosuppressive ability was assessed by inhibition of T cells. Conditioned media (CM) from GLI1-overexpressing mouse melanoma cells was used to culture PMN-MDSCs, and the effects of CM were evaluated by Transwell invasion assay and T cell inhibition. Cytokine array analysis, qPCR and chromatin immunoprecipitation were performed to explore the regulation of CX3CL1 expression by GLI1. Human monocyte-derived dendritic cells (moDCs) were cultured in CM from GLI1-silenced patient-derived melanoma cells to assess their activation and recruitment. Blocking antibodies anti-CX3CL1, anti-CCL7 and anti-CXCL8 were used for in vitro functional assays. RESULTS: Melanoma cell-intrinsic activation of GLI1 promotes changes in the infiltration of immune cells, leading to accumulation of immunosuppressive PMN-MDSCs and regulatory T cells, and to decreased infiltration of dendric cells (DCs), CD8 + and CD4 + T cells in the TME. In addition, we show that ectopic expression of GLI1 in melanoma cells enables PMN-MDSC expansion and recruitment, and increases their ability to inhibit T cells. The chemokine CX3CL1, a direct transcriptional target of GLI1, contributes to PMN-MDSC expansion and recruitment. Finally, silencing of GLI1 in patient-derived melanoma cells promotes the activation of human monocyte-derived dendritic cells (moDCs), increasing cytoskeleton remodeling and invasion ability. This phenotype is partially prevented by blocking the chemokine CCL7, but not CXCL8. CONCLUSION: Our findings highlight the relevance of tumor-derived GLI1 in promoting an immune-suppressive TME, which allows melanoma cells to evade the immune system, and pave the way for the design of new combination treatments targeting GLI1.
Assuntos
Melanoma , Células Supressoras Mieloides , Microambiente Tumoral , Proteína GLI1 em Dedos de Zinco , Animais , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Camundongos , Humanos , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/imunologia , Melanoma/patologia , Melanoma/metabolismo , Melanoma/imunologia , Melanoma/genética , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Melanoma Experimental/metabolismo , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Camundongos Endogâmicos C57BLRESUMO
Mesenchymal stem cells, due to their multipotent ability, are considered one of the best candidates to be used in regenerative medicine. To date, the most used source is represented by the bone marrow, despite the limited number of cells and the painful/invasive procedure for collection. Therefore, the scientific community has investigated many alternative sources for the collection of mesenchymal stem cells, with the adipose tissue representing the best option, given the abundance of mesenchymal stem cells and the easy access. Although adipose mesenchymal stem cells have recently been investigated for their multipotency, the molecular mechanisms underlying their adipogenic potential are still unclear. In this scenario, this communication is aimed at defining the role of miRNAs in adipogenic potential of adipose-derived mesenchymal stem cells via real-time PCR. Even if preliminary, our data show that cell culture conditions affect the expression of specific miRNA involved in the adipogenic potential of mesenchymal stem cells. The in vitro/in vivo validation of these results could pave the way for novel therapeutic strategies in the field of regenerative medicine. In conclusion, our research highlights how specific cell culture conditions can modulate the adipogenic potential of adipose mesenchymal stem cells through the regulation of specific miRNAs.
RESUMO
Air pollution, especially fine particulate matter (PM2.5, with an aerodynamic diameter of less than 2.5 µm), represents a risk factor for human health. Many studies, regarding cancer onset and progression, correlated with the short and/or long exposition to PM2.5. This is mainly mediated by the ability of PM2.5 to reach the pulmonary alveoli by penetrating into the blood circulation. This review recapitulates the methodologies used to study PM2.5 in cellular models and the downstream effects on the main molecular pathways implicated in cancer. We report a set of data from the literature, that describe the involvement of miRNAs or long noncoding RNAs on the main biological processes involved in oxidative stress, inflammation, autophagy (PI3K), cell proliferation (NFkB, STAT3), and EMT (Notch, AKT, Wnt/ß-catenin) pathways. microRNAs, as well as gene expression profile, responds to air pollution environment modulating some key genes involved in epigenetic modification or in key mediators of the biological processes described below. In this review, we provide some scientific evidences about the thigh correlation between miRNAs dysregulation, PM2.5 exposition, and gene pathways involved in cancer progression.
RESUMO
Mapping the cellular refractive index (RI) is a central task for research involving the composition of microorganisms and the development of models providing automated medical screenings with accuracy beyond 95%. These models require significantly enhancing the state-of-the-art RI mapping capabilities to provide large amounts of accurate RI data at high throughput. Here, we present a machine-learning-based technique that obtains a biological specimen's real-time RI and thickness maps from a single image acquired with a conventional color camera. This technology leverages a suitably engineered nanostructured membrane that stretches a biological analyte over its surface and absorbs transmitted light, generating complex reflection spectra from each sample point. The technique does not need pre-existing sample knowledge. It achieves 10-4 RI sensitivity and sub-nanometer thickness resolution on diffraction-limited spatial areas. We illustrate practical application by performing sub-cellular segmentation of HCT-116 colorectal cancer cells, obtaining complete three-dimensional reconstruction of the cellular regions with a characteristic length of 30 µm. These results can facilitate the development of real-time label-free technologies for biomedical studies on microscopic multicellular dynamics.
Assuntos
Refratometria , Humanos , Células HCT116RESUMO
Aberrant activation of Hedgehog (HH) signaling in cancer is the result of genetic alterations of upstream pathway components (canonical) or other oncogenic mechanisms (noncanonical), that ultimately concur to activate the zinc-finger transcription factors GLI1 and GLI2. Therefore, inhibition of GLI activity is a good therapeutic option to suppress both canonical and noncanonical activation of the HH pathway. However, only a few GLI inhibitors are available, and none of them have the profile required for clinical development due to poor metabolic stability and aqueous solubility, and high hydrophobicity. Two promising quinoline inhibitors of GLI were selected by virtual screening and subjected to hit-to-lead optimization, thus leading to the identification of the 4-methoxy-8-hydroxyquinoline derivative JC19. This molecule impaired GLI1 and GLI2 activities in several cellular models interfering with the binding of GLI1 and GLI2 to DNA. JC19 suppressed cancer cell proliferation by enhancing apoptosis, inducing a strong anti-tumor response in several cancer cell lines in vitro. Specificity towards GLI1 and GLI2 was demonstrated by lower activity of JC19 in GLI1- or GLI2-depleted cancer cells. JC19 showed excellent metabolic stability and high passive permeability. Notably, JC19 inhibited GLI1-dependent melanoma xenograft growth in vivo, with no evidence of toxic effects in mice. These results highlight the potential of JC19 as a novel anti-cancer agent targeting GLI1 and GLI2.
Assuntos
Neoplasias , Proteína GLI1 em Dedos de Zinco , Proteína Gli2 com Dedos de Zinco , Animais , Humanos , Camundongos , Proteínas Hedgehog/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Proteína GLI1 em Dedos de Zinco/antagonistas & inibidores , Proteína Gli2 com Dedos de Zinco/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Neoplasias/patologiaRESUMO
Hedgehog-GLI (HH) signaling plays an essential role in embryogenesis and tissue homeostasis. Aberrant activation of the pathway through mutations or other mechanisms is involved in the development and progression of numerous types of cancer, including basal cell carcinoma, medulloblastoma, melanoma, breast, prostate, hepatocellular and pancreatic carcinomas. Activation of HH signaling sustains proliferation, suppresses cell death signals, enhances invasion and metastasis, deregulates cellular metabolism and promotes angiogenesis and tumor inflammation. Targeted inhibition of the HH pathway has therefore emerged as an attractive therapeutic strategy for the treatment of a wide range of cancers. Currently, the Smoothened (SMO) receptor and the downstream GLI transcriptional factors have been investigated for the development of targeted drugs. Recent studies have revealed that the HH signaling is also involved in tumor immune evasion and poor responses to cancer immunotherapy. Here we focus on the effects of HH signaling on the major cellular components of the adaptive and innate immune systems, and we present recent discoveries elucidating how the immunosuppressive function of the HH pathway is engaged by cancer cells to prevent immune surveillance. In addition, we discuss the future prospect of therapeutic options combining the HH pathway and immune checkpoint inhibitors.
Assuntos
Carcinoma Basocelular , Neoplasias Cerebelares , Neoplasias Cutâneas , Masculino , Humanos , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Carcinoma Basocelular/patologia , Receptor Smoothened/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismoRESUMO
Tumor recurrence is often attributed to cancer stem cells (CSCs). We previously demonstrated that down-regulation of Pregnane X Receptor (PXR) decreases the chemoresistance of CSCs and prevents colorectal cancer recurrence. Currently, no PXR inhibitor is usable in clinic. Here, we identify miR-148a as a targetable element upstream of PXR signaling in CSCs, which when over-expressed decreases PXR expression and impairs tumor relapse after chemotherapy in mouse tumor xenografts. We then develop a fluorescent reporter screen for miR-148a activators and identify the anti-helminthic drug niclosamide as an inducer of miR-148a expression. Consequently, niclosamide decreased PXR expression and CSC numbers in colorectal cancer patient-derived cell lines and synergized with chemotherapeutic agents to prevent CSC chemoresistance and tumor recurrence in vivo. Our study suggests that endogenous miRNA inducers is a viable strategy to down-regulate PXR and illuminates niclosamide as a neoadjuvant repurposing strategy to prevent tumor relapse in colon cancer.
Assuntos
Neoplasias do Colo , MicroRNAs , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Recidiva Local de Neoplasia/patologia , Células-Tronco Neoplásicas/metabolismo , Niclosamida/metabolismo , Niclosamida/farmacologia , Niclosamida/uso terapêutico , Receptor de Pregnano X/genética , Receptor de Pregnano X/metabolismoRESUMO
We present a novel configuration for high spectral resolution multiplexing acquisition based on the Hadamard transform in stimulated Raman scattering (SRS) microscopy. The broadband tunable output of a dual-beam femtosecond laser is filtered by a fast, narrowband, and multi-channel acousto-optic tunable filter (AOTF). By turning on and off different subsets of its 8 independent channels, the AOTF generates the spectral masks given by the Hadamard matrix. We demonstrate a seamless and automated operation in the Raman fingerprint and CH-stretch regions. In the presence of additive noise, the spectral measurements using the multiplexed method show the same signal-to-noise ratio of conventional single-wavenumber acquisitions performed with 4 times longer integration time.
RESUMO
[This corrects the article DOI: 10.18632/oncotarget.2962.].
RESUMO
BACKGROUND: The use of stem cells, including mesenchymal stem cells (MSCs), for regenerative medicine is gaining interest for the clinical benefits so far obtained in patients. This study investigates the use of adipose autologous tissue in combination with platelet-rich plasma (PRP) to improve the clinical outcome of patients affected by systemic sclerosis (SSc). METHODS: Adipose-derived mesenchymal stem cells (AD-MSCs) and PRPs were purified from healthy donors and SSc patients. The multilineage differentiation potential of AD-MSCs and their genotypic-phenotypic features were investigated. A cytokine production profile was evaluated on AD-MSCs and PRPs from both healthy subjects and SSc patients. The adipose tissue-derived cell fraction, the so-called stromal vascular fraction (SVF), was coinjected with PRP in the perioral area of SSc patients. RESULTS: Histopathological and phenotypical analysis of adipose tissue from SSc patients revealed a disorganization of its distinct architecture coupled with an altered cell composition. Although AD-MSCs derived from SSc patients showed high multipotency, they failed to sustain a terminally differentiated progeny. Furthermore, SVFs derived from SSc patients differed from healthy donors in their MSC-like traits coupled with an aberrant cytokine production profile. Finally, the administration of PRP in combination with autologous SVF improved buccal's rhyme, skin elasticity and vascularization for all of the SSc patients enrolled in this study. CONCLUSIONS: This innovative regenerative therapy could be exploited for the treatment of chronic connective tissue diseases, including SSc.
Assuntos
Tecido Adiposo/citologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Plasma Rico em Plaquetas/fisiologia , Medicina Regenerativa/métodos , Escleroderma Sistêmico/terapia , Tecido Adiposo/imunologia , Adulto , Idoso de 80 Anos ou mais , Antígenos CD/genética , Antígenos CD/imunologia , Diferenciação Celular , Proliferação de Células , Terapia Baseada em Transplante de Células e Tecidos/métodos , Citocinas/genética , Citocinas/imunologia , Feminino , Expressão Gênica , Humanos , Masculino , Células-Tronco Mesenquimais/imunologia , Pessoa de Meia-Idade , Neovascularização Fisiológica , Cultura Primária de Células , Escleroderma Sistêmico/imunologia , Escleroderma Sistêmico/patologia , Pele/patologiaRESUMO
Basal-like breast cancer is an aggressive tumor subtype with a poor response to conventional therapies. Tumor formation and relapse are sustained by a cell subset of Breast Cancer Stem Cells (BrCSCs). Here we show that miR-100 inhibits maintenance and expansion of BrCSCs in basal-like cancer through Polo-like kinase1 (Plk1) down-regulation. Moreover, miR-100 favors BrCSC differentiation, converting a basal like phenotype into luminal. It induces the expression of a functional estrogen receptor (ER) and renders basal-like BrCSCs responsive to hormonal therapy. The key role played by miR-100 in breast cancer free-survival is confirmed by the analysis of a cohort of patients' tumors, which shows that low expression of miR-100 is a negative prognostic factor and is associated with gene signatures of high grade undifferentiated tumors. Our findings indicate a new possible therapeutic strategy, which could make aggressive breast cancers responsive to standard treatments.