Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Proc Biol Sci ; 286(1906): 20190858, 2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31288701

RESUMO

While age is fundamental in animal biology, forming the basis of critical concepts such as life-history strategies, longevity and population structures, measuring this variable in some taxa remains problematic. Such is the case of holothuroid echinoderms, which play key roles in marine benthic communities from the shore to the abyss, and which are extensively fished in many regions across the globe. Here, we present and validate a promising ageing technique using the cold-water species Psolus fabricii. The method involves the extraction of the oldest dermal plates (largest dorsal ossicles) to preserve their original pigments and structure. While plates initially appear to have a uniform texture, polishing and dying them reveals layered ring patterns. A study of laboratory-reared juveniles, from settlement to 40 months of age, confirmed that one layer is added annually, making plates both larger and thicker, and generating successive light and dark rings, the latter representing the transition (overlap) between two layers. Therefore, each pair of rings represents an annual growth band. Size-at-age data obtained using this method revealed that growth of P. fabricii is slow and that wild individuals collected at diving depths had reached an age of several decades.


Assuntos
Envelhecimento , Pepinos-do-Mar/crescimento & desenvolvimento , Animais , Pepinos-do-Mar/anatomia & histologia
3.
J Anim Ecol ; 88(6): 820-832, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30636040

RESUMO

While the study of dispersal and connectivity in the ocean typically centres on pelagic species and planktonic larval stages of benthic species, the present work explores an overlooked locomotor means in post-settlement benthic stages that redefines their dispersal potential. Members of the echinoderm class Holothuroidea colonize a diversity of marine environments world-wide, where they play key ecological and economical roles, making their conservation a priority. Holothuroids are commonly called sea cucumbers or sea slugs to reflect their slow movements and are assumed to disperse chiefly through pelagic larvae. The present study documents and explores their unexpected ability to actively modify their buoyancy, leading them to tumble or float at speeds orders of magnitudes faster than through benthic crawling. Two focal species representing different taxonomic orders, geographic distributions and reproductive strategies were studied over several years. Active buoyancy adjustment (ABA) was achieved through a rapid increase in water-to-flesh ratio by up to 740%, leading to bloating, and simultaneously detachment from the substrate. It occurred as early as 6 months post settlement in juveniles and was recorded in wild adult populations. In experimental trials, ABA was triggered by high conspecific density, decreasing salinity and increasing water turbidity. Based on field video footage, ABA-assisted movements generated speeds of up to 90 km/day. These findings imply that displacement during planktonic larval stages may not supersede the locomotor capacity of benthic stages, challenging the notion of sedentarity. Combining the present results and anecdotal reports, ABA emerges as a generalized means of dispersal among benthic animals, with critical implications for world-wide management and conservation of commercially and ecologically significant species.


Assuntos
Ecologia , Animais , Larva
4.
Proc Biol Sci ; 285(1879)2018 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-29848645

RESUMO

Whole-body chimaeras (organisms composed of genetically distinct cells) have been directly observed in modular/colonial organisms (e.g. corals, sponges, ascidians); whereas in unitary deuterostosmes (including mammals) they have only been detected indirectly through molecular analysis. Here, we document for the first time the step-by-step development of whole-body chimaeras in the holothuroid Cucumaria frondosa, a unitary deuterostome belonging to the phylum Echinodermata. To the best of our knowledge, this is the most derived unitary metazoan in which direct investigation of zygote fusibility has been undertaken. Fusion occurred among hatched blastulae, never during earlier (unhatched) or later (larval) stages. The fully fused chimaeric propagules were two to five times larger than non-chimaeric embryos. Fusion was positively correlated with propagule density and facilitated by the natural tendency of early embryos to agglomerate. The discovery of natural chimaerism in a unitary deuterostome that possesses large externally fertilized eggs provides a framework to explore key aspects of evolutionary biology, histocompatibility and cell transplantation in biomedical research.


Assuntos
Quimera/embriologia , Pepinos-do-Mar/embriologia , Animais
5.
PLoS One ; 10(5): e0127884, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26011165

RESUMO

The lack of a reliable and innocuous mark-recapture method has limited studies that would provide essential information for the management of commercial sea cucumbers. Tagging sea cucumbers is notoriously difficult because of their plastic nature and autolysis capacities. The markers that have so far been tested, mainly on or through the body wall, were either lost rapidly or had major drawbacks (e.g. suitable only for batch identification, requiring complex analysis, causing infections, necrosis, behavioural changes and mortality). The present study explored the efficacy of passive integrated transponder (PIT) tags for individually marking sea cucumbers by assessing retention rates and long-term side effects of tags inserted in previously unstudied tissues/organs. Individuals of the species Cucumaria frondosa were tagged in the body wall, aquapharyngeal bulb and at the base of the oral tentacles. They were monitored closely for evidence of stress, infection, change in feeding and spawning behaviour and tag retention rate. Implanting the tag in an oral tentacle to reach the hydrovascular system of the aquapharyngeal bulb achieved the best retention rates in full-size individuals: from a maximum of 92% after 30 days to 68% at the end of the experimental period (300 days). Efficacy was lower in smaller individuals (84% after 30 d and 42% after 300 d). Following a slight increase in cloacal movements for 15 h post tagging, no side effect was noted in sea cucumbers tagged in the aquapharyngeal bulb via the tentacles. Feeding and spawning behaviours were not affected and no signs of infections or abnormal cell development in the vicinity of the tags were observed. This study indicates that marking sea cucumbers with 8.2 mm long PIT tags implanted via the oral tentacle is an effective technique, yielding relatively high retention rates over long periods without any detectable physiological or behavioural effects.


Assuntos
Cucumaria/fisiologia , Eletrônica/instrumentação , Animais , Comportamento Animal , Cloaca/fisiologia , Cucumaria/anatomia & histologia , Estatística como Assunto , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA