Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Environ Res ; 96(5): e11039, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38787335

RESUMO

This explorative study was aimed at first characterizing the sponge Spongilla lacustris (Linnaeus, 1759) from the sub-Arctic Pasvik River (Northern Fennoscandia), in terms of associated microbial communities and pollutant accumulation. Persistent organic pollutants were determined in sponge mesohyl tissues, along with the estimation of the microbial enzymatic activity rates, prokaryotic abundance and morphometric traits, and the analysis of the taxonomic bacterial diversity by next-generation sequencing techniques. The main bacterial groups associated with S. lacustris were Alphaproteobacteria and Gammaproteobacteria, followed by Chloroflexi and Acidobacteria. The structure of the S. lacustris-associated bacterial communities was in sharp contrast to those of the bacterioplankton, being statistically close to those found in sediments. Dieldrin was measured at higher concentrations in the sponge tissues (3.1 ± 0.4 ng/g) compared to sediment of the same site (0.04 ± 0.03 ng/g). Some taxonomic groups were possibly related to the occurrence of certain contaminants, as was the case of Patescibacteria and dieldrin. Obtained results substantially contribute to the still scarce knowledge of bacterial community diversity, activities, and ecology in freshwater sponges. PRACTITIONER POINTS: Microbial community associated with Spongilla lacustris is probably shaped by the occurrence of certain contaminants, mainly dieldrin and heavy metals. A higher accumulation of dieldrin in the sponge mesohyl tissues than in sediment was determined. S. lacustris is suggested as sponge species to be used as a sentinel of pesticide pollution in the Pasvik River. S. lacustris, living in tight contact with soft substrates, harbored communities more similar to sediment than water communities.


Assuntos
Bactérias , Poríferos , Rios , Poluentes Químicos da Água , Animais , Poríferos/microbiologia , Rios/química , Rios/microbiologia , Poluentes Químicos da Água/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Microbiota , Monitoramento Ambiental
2.
Front Microbiol ; 15: 1341641, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38404594

RESUMO

Introduction: Antarctic Porifera have gained increasing interest as hosts of diversified associated microbial communities that could provide interesting insights on the holobiome system and its relation with environmental parameters. Methods: The Antarctic demosponge species Haliclona dancoi and Haliclona scotti were targeted for the determination of persistent organic pollutant (i. e., polychlorobiphenyls, PCBs, and polycyclic aromatic hydrocarbons, PAHs) and trace metal concentrations, along with the characterization of the associated prokaryotic communities by the 16S rRNA next generation sequencing, to evaluate possible relationships between pollutant accumulation (e.g., as a stress factor) and prokaryotic community composition in Antarctic sponges. To the best of our knowledge, this approach has been never applied before. Results: Notably, both chemical and microbiological data on H. scotti (a quite rare species in the Ross Sea) are here reported for the first time, as well as the determination of PAHs in Antarctic Porifera. Both sponge species generally contained higher amounts of pollutants than the surrounding sediment and seawater, thus demonstrating their accumulation capability. The structure of the associated prokaryotic communities, even if differing at order and genus levels between the two sponge species, was dominated by Proteobacteria and Bacteroidota (with Archaea abundances that were negligible) and appeared in sharp contrast to communities inhabiting the bulk environment. Discussions: Results suggested that some bacterial groups associated with H. dancoi and H. scotti were significantly (positively or negatively) correlated to the occurrence of certain contaminants.

3.
Sci Total Environ ; 902: 166043, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544451

RESUMO

Different marine sponge species from Tethys Bay, Antarctica, were analyzed for contamination by polyester and polyamide microplastics (MPs). The PISA (Polymer Identification and Specific Analysis) procedure was adopted as it provides, through depolymerization and HPLC analysis, highly sensitive mass-based quantitative data. The study focused on three analytes resulting from the hydrolytic depolymerization of polyesters and polyamides: terephthalic acid (TPA), 6-aminohexanoic acid (AHA), and 1-6-hexanediamine (HMDA). TPA is a comonomer found in the polyesters poly(ethylene terephthalate) (PET) and poly(butylene adipate co terephthalate) (PBAT), and in polyamides such as poly(1,4-p-phenylene terephthalamide) (Kevlar™ and Twaron™ fibers) and poly(hexamethylene terephthalamide) (nylon 6 T). AHA is the monomer of nylon 6. HMDA is a comonomer of the aliphatic nylon 6,6 (HMDA-co-adipic acid) and of semi-aromatic polyamides such as, again, nylon 6 T (HMDA-co-TPA). Except for the biodegradable PBAT, these polymers exhibit high to extreme mechanical, thermal and chemical resistance. Indeed, they are used as technofibers in protective clothing able to withstand extreme conditions as those typical of Antarctica. Of the two amine monomers, only HMDA was found above the limit of quantification, and only in specimens of Haliclona (Rhizoniera) scotti, at a concentration equivalent to 27 µg/kg of nylon 6,6 in the fresh sponge. Comparatively higher concentrations, corresponding to 2.5-4.1 mg/kg of either PBAT or PPTA, were calculated from the concentration of TPA detected in all sponge species. Unexpectedly, TPA did not originate from PET (the most common textile fiber) as it was detected in the acid hydrolysate, whereas the PISA procedure results in effective PET depolymerization only under alkaline conditions. The obtained results showed that sponges, by capturing and concentrating MPs from large volumes of filtered marine waters, may be considered as effective indicators of the level and type of pollution by MPs and provide early warnings of increasing levels of pollution even in remote areas.


Assuntos
Plásticos , Poríferos , Animais , Biomarcadores Ambientais , Nylons , Regiões Antárticas , Poliésteres , Microplásticos
4.
Environ Sci Pollut Res Int ; 29(42): 64252-64258, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35939195

RESUMO

Polycyclic aromatic hydrocarbons and polychlorinated biphenyls are commonly categorized as persistent organic pollutants. In order to analyze these pollutants, customized stationary phases are increasingly being developed and synthesized for solid-phase extraction. In this work, we tested a new solventless solid-phase extraction approach based on the use of a Magic Chemisorber® (Frontier Lab) which consists of a bead-covered polydimethylsiloxane stationary phase with a thickness of 500 µm. These devices are directly immersed into aqueous samples and then introduced into a pyrolysis-gas chromatography-mass spectrometry system equipped with a cryofocusing system for the thermal desorption and analysis of the adsorbed species. Our new method performs better than the most recent solid-phase extraction devices, with limits of detection lower than 2.7 ng/L and limits of quantification lower than 9.0 ng/L. The method was tested on standard compounds and on an environmental sample, showing the potential to characterize other chemical species besides the persistent organic pollutants, such as phthalate plasticizers and antioxidants.


Assuntos
Poluentes Ambientais , Bifenilos Policlorados , Hidrocarbonetos Policíclicos Aromáticos , Poluentes Químicos da Água , Antioxidantes , Dimetilpolisiloxanos/análise , Poluentes Ambientais/análise , Água Doce/análise , Poluentes Orgânicos Persistentes , Plastificantes , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Pirólise , Extração em Fase Sólida/métodos , Poluentes Químicos da Água/análise
5.
Microorganisms ; 10(5)2022 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-35630464

RESUMO

The Pasvik River experiences chemical, physical, and biological stressors due to the direct discharges of domestic sewage from settlements located within the catchment and runoff from smelter and mine wastes. Sediments, as a natural repository of organic matter and associated contaminants, are of global concern for the possible release of pollutants in the water column, with detrimental effects on aquatic organisms. The present study was aimed at characterizing the riverine benthic microbial community and evaluating its ecological role in relation to the contamination level. Sediments were sampled along the river during two contrasting environmental periods (i.e., beginning and ongoing phases of ice melting). Microbial enzymatic activities, cell abundance, and morphological traits were evaluated, along with the phylogenetic community composition. Amplified 16S rRNA genes from bacteria were sequenced using a next-generation approach. Sediments were also analyzed for a variety of chemical features, namely particulate material characteristics and concentration of polychlorobiphenyls, polycyclic aromatic hydrocarbons, and pesticides. Riverine and brackish sites did not affect the microbial community in terms of main phylogenetic diversity (at phylum level), morphometry, enzymatic activities, and abundance. Instead, bacterial diversity in the river sediments appeared to be influenced by the micro-niche conditions, with differences in the relative abundance of selected taxa. In particular, our results highlighted the occurrence of bacterial taxa directly involved in the C, Fe, and N cycles, as well as in the degradation of organic pollutants and toxic compounds.

6.
Polymers (Basel) ; 13(5)2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33807658

RESUMO

Microplastics (MPs) quantification in benthic marine sediments is typically performed by time-consuming and moderately accurate mechanical separation and microscopy detection. In this paper, we describe the results of our innovative Polymer Identification and Specific Analysis (PISA) of microplastic total mass, previously tested on either less complex sandy beach sediment or less demanding (because of the high MPs content) wastewater treatment plant sludges, applied to the analysis of benthic sediments from a sublittoral area north-west of Leghorn (Tuscany, Italy). Samples were collected from two shallow sites characterized by coarse debris in a mixed seabed of Posidonia oceanica, and by a very fine silty-organogenic sediment, respectively. After sieving at <2 mm the sediment was sequentially extracted with selective organic solvents and the two polymer classes polystyrene (PS) and polyolefins (PE and PP) were quantified by pyrolysis-gas chromatography-mass spectrometry (Pyr-GC/MS). A contamination in the 8-65 ppm range by PS could be accurately detected. Acid hydrolysis on the extracted residue to achieve total depolymerization of all natural and synthetic polyamides, tagging of all aminated species in the hydrolysate with a fluorophore, and reversed-phase high performance liquid chromatography (HPLC) (RP-HPLC) analysis, allowed the quantification within the 137-1523 ppm range of the individual mass of contaminating nylon 6 and nylon 6,6, based on the detected amounts of the respective monomeric amines 6-aminohexanoic acid (AHA) and hexamethylenediamine (HMDA). Finally, alkaline hydrolysis of the residue from acid hydrolysis followed by RP-HPLC analysis of the purified hydrolysate showed contamination by polyethylene terephthalate (PET) in the 12.1-2.7 ppm range, based on the content of its comonomer, terephthalic acid.

7.
Artigo em Inglês | MEDLINE | ID: mdl-33801256

RESUMO

The study of the interaction of persistent organic pollutants with biosubstrates helps to unravel the pathways for toxicity, however, few mechanistic data are present in the literature for these systems. We analyzed the binding of paraquat (PQ) and diquat (DQ) herbicides to natural calf thymus DNA and a DNA G-quadruplex by spectrophotometric titrations, ethidium bromide exchange tests, viscometry, and melting experiments. The interaction with bovine serum albumin (BSA) protein was studied spectrofluorimetrically at different temperatures. The retention of the targets on positive, negative, and neutral micellar aggregates and liposomes was analyzed by ultrafiltration experiments. Despite some favorable features, PQ and DQ only externally bind natural DNA and do not interact with DNA oligonucleotides. Both herbicides bind bovine serum albumin (BSA). PQ binds BSA mainly according to an electrostatics-driven process. However, ultrafiltration data also show that some hydrophobic contribution participates in the features of these systems. The practical problems related to unfavorable spectroscopic signals and inner filter effects are also discussed. Overall, both herbicides show a low affinity for nucleic acids and weak penetration into liposomes; in addition, the equilibrium constants values found for BSA system suggest optimal conditions for transport in the body.


Assuntos
Diquat , Herbicidas , Animais , Bovinos , Herbicidas/análise , Paraquat , Ligação Proteica , Soroalbumina Bovina , Análise Espectral
8.
Molecules ; 25(9)2020 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-32354039

RESUMO

A new approach to the synthesis of selected quinolinecarbaldehydes with carbonyl groups located at C5 and/or in C7 positions is presented in this paper in conjunction with spectroscopic characterization of the products. The classical Reimer-Tiemann, Vilsmeier-Haack and Duff aldehyde synthesis methods were compared due to their importance. Computational studies were carried out to explain the preferred selectivity of the presented formylation transformations. A carbene insertion reaction based on Reimer-Tiemann methodology is presented for making 7-bromo-8-hydroxyquinoline-5-carbaldehyde. Additionally, Duff and Vilsmeier-Haack reactions were used in the double formylation of quinoline derivatives and their analogues benzo[h]quinolin-10-ol, 8-hydroxy-2-methylquinoline-5,7-dicarbaldehyde, 8-(dimethylamino) quinoline-5,7-dicarbaldehyde and 10-hydroxybenzo[h]quinoline-7,9-dicarbaldehyde. Four Schiff base derivatives of 2,6-diisopropylbenzenamine were prepared from selected quinoline-5-carbaldehydes and quinoline-7-carbaldehyde by an efficient synthesis protocol. Their properties have been characterized by a combination of several techniques: MS, HRMS, GC-MS, FTIR, electronic absorption spectroscopy and multinuclear NMR. The electrochemical properties of 8-hydroxy-quinoline-5-carbaldehyde, 6-(dimethylamino)quinoline-5-carbaldehyde and its methylated derivative were investigated, and a strong correlation between the chemical structure and obtained reduction and oxidation potentials was found. The presence of a methyl group facilitates oxidation. In contrast, the reduction potential of methylated compounds was more negative comparing to non-methylated structure. Calculations of frontier molecular orbitals supported the finding. The structures of 8-hydroxy-2-methylquinoline-5,7-dicarbaldehyde and four Schiff bases were determined by single-crystal X-ray diffraction measurements.


Assuntos
Aldeídos/síntese química , Quinolinas/síntese química , Bases de Schiff/química , Acetonitrilas/química , Aldeídos/química , Química Orgânica , Eletroquímica , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Metano/análogos & derivados , Metano/química , Conformação Molecular , Oxigênio/química , Quinolinas/química , Software , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 223: 117313, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31277031

RESUMO

The binding to biosubstrates and micellar systems of pollutants as the polycyclic aromatic hydrocarbon (PAH) derivatives 1-aminopyrene (1-PyNH2) and 1-hydroxymethylpyrene (1-PyMeOH) and the carbamate-pesticides 1-naphthyl-N-methylcarbamate (carbaryl, CA) and methyl benzimidazol-2-ylcarbamate (carbendazim, CBZ) was analysed through an integrated strategy combining spectroscopy and quantum chemistry. As biosubstrates, natural DNA and bovine serum albumin (BSA) were taken into account for a thermodynamic analysis of the binding features through spectrophotometric and spectrofluorometric techniques. In all cases, a strong DNA interaction is present and intercalation is supposed as the major binding mode. For the PAH derivatives, DNA binding is found to be favoured under high salt conditions and BSA static quenching and binding with 1:1 stoichiometry occurs. The molecular structure and optical properties of 1-PyNH2, CA and CBZ together with their intercalated adducts in DNA were studied also by means of quantum chemical approach. The (TD)DFT calculations on intercalated dye/DNA adducts quantitatively reproduce the experimentally observed spectroscopic changes, thus confirming the intercalation hypothesis. The theoretical approach also provides information on the adducts' geometries and on the amount of charge transfer with DNA. Moreover, ultrafiltration tests in the presence of anionic (SDS), cationic (DTAC) and neutral (Triton X) micellar aggregates and liposomes provided insights into lipophilicity and cellular membrane affinity. PAH derivatives show high retention coefficient in all cases, whereas in the case of carbamate-pesticides micellar retention might be significantly reduced and is very limited in the case of liposomes.


Assuntos
Carbamatos/metabolismo , DNA/metabolismo , Lipossomos/metabolismo , Micelas , Praguicidas/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Soroalbumina Bovina/metabolismo , Animais , Carbamatos/química , Bovinos , Cinética , Conformação Molecular , Praguicidas/química , Hidrocarbonetos Policíclicos Aromáticos/química , Espectrometria de Fluorescência , Espectrofotometria
10.
Arch Environ Contam Toxicol ; 77(2): 291-307, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30982081

RESUMO

Anthropogenic impact over the Pasvik River (Arctic Norway) is mainly caused by emissions from runoff from smelter and mine wastes, as well as by domestic sewage from the Russian, Norwegian, and Finnish settlements situated on its catchment area. In this study, sediment samples from sites within the Pasvik River area with different histories of metal input were analyzed for metal contamination and occurrence of metal-resistant bacteria in late spring and summer of 2014. The major differences in microbial and chemical parameters were mostly dependent on local inputs than seasonality. Higher concentrations of metals were generally detected in July rather than May, with inner stations that became particularly enriched in Cr, Ni, Cu, and Zn, but without significant differences. Bacterial resistance to metals, which resulted from viable counts on amended agar plates, was in the order Ni2+>Pb2+>Co2+>Zn2+>Cu2+>Cd2+>Hg2+, with higher values that were generally determined at inner stations. Among a total of 286 bacterial isolates (mainly achieved from Ni- and Pb-amended plates), the 7.2% showed multiresistance at increasing metal concentration (up to 10,000 ppm). Selected multiresistant isolates belonged to the genera Stenotrophomonas, Arthrobacter, and Serratia. Results highlighted that bacteria, rapidly responding to changing conditions, could be considered as true indicators of the harmful effect caused by contaminants on human health and environment and suggested their potential application in bioremediation processes of metal-polluted cold sites.


Assuntos
Bactérias/efeitos dos fármacos , Farmacorresistência Bacteriana , Sedimentos Geológicos/microbiologia , Metais/farmacologia , Regiões Árticas , Bactérias/isolamento & purificação , Monitoramento Ambiental/métodos , Metais/análise , Noruega , Filogenia , Rios , Estações do Ano , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA