Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACM Trans Graph ; 42(1)2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37122317

RESUMO

The human visual system evolved in environments with statistical regularities. Binocular vision is adapted to these such that depth perception and eye movements are more precise, faster, and performed comfortably in environments consistent with the regularities. We measured the statistics of eye movements and binocular disparities in virtual-reality (VR) - gaming environments and found that they are quite different from those in the natural environment. Fixation distance and direction are more restricted in VR, and fixation distance is farther. The pattern of disparity across the visual field is less regular in VR and does not conform to a prominent property of naturally occurring disparities. From this we predict that double vision is more likely in VR than in the natural environment. We also determined the optimal screen distance to minimize discomfort due to the vergence-accommodation conflict, and the optimal nasal-temporal positioning of head-mounted display (HMD) screens to maximize binocular field of view. Finally, in a user study we investigated how VR content affects comfort and performance. Content that is more consistent with the statistics of the natural world yields less discomfort than content that is not. Furthermore, consistent content yields slightly better performance than inconsistent content.

2.
Front Robot AI ; 9: 994284, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36329691

RESUMO

When exploring the surrounding environment with the eyes, humans and primates need to interpret three-dimensional (3D) shapes in a fast and invariant way, exploiting a highly variant and gaze-dependent visual information. Since they have front-facing eyes, binocular disparity is a prominent cue for depth perception. Specifically, it serves as computational substrate for two ground mechanisms of binocular active vision: stereopsis and binocular coordination. To this aim, disparity information, which is expressed in a retinotopic reference frame, is combined along the visual cortical pathways with gaze information and transformed in a head-centric reference frame. Despite the importance of this mechanism, the underlying neural substrates still remain widely unknown. In this work, we investigate the capabilities of the human visual system to interpret the 3D scene exploiting disparity and gaze information. In a psychophysical experiment, human subjects were asked to judge the depth orientation of a planar surface either while fixating a target point or while freely exploring the surface. Moreover, we used the same stimuli to train a recurrent neural network to exploit the responses of a modelled population of cortical (V1) cells to interpret the 3D scene layout. The results for both human performance and from the model network show that integrating disparity information across gaze directions is crucial for a reliable and invariant interpretation of the 3D geometry of the scene.

3.
Behav Res Methods ; 2022 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879503

RESUMO

We describe the design and performance of a high-fidelity wearable head-, body-, and eye-tracking system that offers significant improvement over previous such devices. This device's sensors include a binocular eye tracker, an RGB-D scene camera, a high-frame-rate scene camera, and two visual odometry sensors, for a total of ten cameras, which we synchronize and record from with a data rate of over 700 MB/s. The sensors are operated by a mini-PC optimized for fast data collection, and powered by a small battery pack. The device records a subject's eye, head, and body positions, simultaneously with RGB and depth data from the subject's visual environment, measured with high spatial and temporal resolution. The headset weighs only 1.4 kg, and the backpack with batteries 3.9 kg. The device can be comfortably worn by the subject, allowing a high degree of mobility. Together, this system overcomes many limitations of previous such systems, allowing high-fidelity characterization of the dynamics of natural vision.

4.
Sci Rep ; 11(1): 20881, 2021 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-34686759

RESUMO

Coordination between visual and motor processes is critical for the selection of stable footholds when walking in uneven terrains. While recent work (Matthis et al. in Curr Biol 8(28):1224-1233, 2018) demonstrates a tight link between gaze (visual) and gait (motor), it remains unclear which aspects of visual information play a role in this visuomotor control loop, and how the loss of this information affects that relationship. Here we examine the role of binocular information in the visuomotor control of walking over complex terrain. We recorded eye and body movements while normally-sighted participants walked over terrains of varying difficulty, with intact vision or with vision in one eye blurred to disrupt binocular vision. Gaze strategy was highly sensitive to the complexity of the terrain, with more fixations dedicated to foothold selection as the terrain became more difficult. The primary effect of increased sensory uncertainty due to disrupted binocular vision was a small bias in gaze towards closer footholds, indicating greater pressure on the visuomotor control process. Participants with binocular vision losses due to developmental disorders (i.e., amblyopia, strabismus), who have had the opportunity to develop alternative strategies, also biased their gaze towards closer footholds. Across all participants, we observed a relationship between an individual's typical level of binocular visual function and the degree to which gaze is shifted toward the body. Thus the gaze-gait relationship is sensitive to the level of sensory uncertainty, and deficits in binocular visual function (whether transient or long-standing) have systematic effects on gaze strategy in complex terrains. We conclude that binocular vision provides useful information for locating footholds during locomotion. Furthermore, we have demonstrated that combined eye/body tracking in natural environments can be used to provide a more detailed understanding of the impact of a type of vision loss on the visuomotor control process of walking, a vital everyday task.


Assuntos
Fixação Ocular/fisiologia , Pé/fisiologia , Visão Binocular/fisiologia , Visão Ocular/fisiologia , Caminhada/fisiologia , Adulto , Movimentos Oculares/fisiologia , Feminino , Marcha/fisiologia , Humanos , Locomoção/fisiologia , Masculino , Desempenho Psicomotor/fisiologia , Adulto Jovem
5.
J Vis ; 21(3): 8, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33661280

RESUMO

From measurements of wavefront aberrations in 16 emmetropic eyes, we calculated where objects in the world create best-focused images across the central 27\(^\circ\) (diameter) of the retina. This is the retinal conjugate surface. We calculated how the surface changes as the eye accommodates from near to far and found that it mostly maintains its shape. The conjugate surface is pitched top-back, meaning that the upper visual field is relatively hyperopic compared to the lower field. We extended the measurements of best image quality into the binocular domain by considering how the retinal conjugate surfaces for the two eyes overlap in binocular viewing. We call this binocular extension the blur horopter. We show that in combining the two images with possibly different sharpness, the visual system creates a larger depth of field of apparently sharp images than occurs with monocular viewing. We examined similarities between the blur horopter and its analog in binocular vision: the binocular horopter. We compared these horopters to the statistics of the natural visual environment. The binocular horopter and scene statistics are strikingly similar. The blur horopter and natural statistics are qualitatively, but not quantitatively, similar. Finally, we used the measurements to refine what is commonly referred to as the zone of clear single binocular vision.


Assuntos
Acomodação Ocular/fisiologia , Visão Binocular/fisiologia , Campos Visuais , Emetropia/fisiologia , Humanos , Retina/fisiologia
6.
Proc Natl Acad Sci U S A ; 118(7)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33574061

RESUMO

In mammals with frontal eyes, optic-nerve fibers from nasal retina project to the contralateral hemisphere of the brain, and fibers from temporal retina project ipsilaterally. The division between crossed and uncrossed projections occurs at or near the vertical meridian. If the division was precise, a problem would arise. Small objects near midline, but nearer or farther than current fixation, would produce signals that travel to opposite hemispheres, making the binocular disparity of those objects difficult to compute. However, in species that have been studied, the division is not precise. Rather, there are overlapping crossed and uncrossed projections such that some fibers from nasal retina project ipsilaterally as well as contralaterally and some from temporal retina project contralaterally as well as ipsilaterally. This increases the probability that signals from an object near vertical midline travel to the same hemisphere, thereby aiding disparity estimation. We investigated whether there is a deficit in binocular vision near the vertical meridian in humans and found no evidence for one. We also investigated the effectiveness of the observed decussation pattern, quantified from anatomical data in monkeys and humans. We used measurements of naturally occurring disparities in humans to determine disparity distributions across the visual field. We then used those distributions to calculate the probability of natural disparities transmitting to the same hemisphere, thereby aiding disparity computation. We found that the pattern of overlapping projections is quite effective. Thus, crossed and uncrossed projections from the retinas are well designed for aiding disparity estimation and stereopsis.


Assuntos
Adaptação Fisiológica , Percepção de Profundidade , Retina/fisiologia , Percepção Visual , Adulto , Animais , Encéfalo/fisiologia , Meio Ambiente , Humanos , Macaca mulatta , Masculino , Vias Visuais/fisiologia
7.
Behav Res Methods ; 53(1): 167-187, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32643061

RESUMO

Saccades are rapid ballistic eye movements that humans make to direct the fovea to an object of interest. Their kinematics is well defined, showing regular relationships between amplitude, duration, and velocity: the saccadic 'main sequence'. Deviations of eye movements from the main sequence can be used as markers of specific neurological disorders. Despite its significance, there is no general methodological consensus for reliable and repeatable measurements of the main sequence. In this work, we propose a novel approach for standard indicators of oculomotor performance. The obtained measurements are characterized by high repeatability, allowing for fine assessments of inter- and intra-subject variability, and inter-ocular differences. The designed experimental procedure is natural and non-fatiguing, thus it is well suited for fragile or non-collaborative subjects like neurological patients and infants. The method has been released as a software toolbox for public use. This framework lays the foundation for a normative dataset of healthy oculomotor performance for the assessment of oculomotor dysfunctions.


Assuntos
Movimentos Oculares , Movimentos Sacádicos , Fenômenos Biomecânicos , Humanos , Visão Ocular
8.
Sci Rep ; 10(1): 15634, 2020 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-32973252

RESUMO

Strabismus is a prevalent impairment of binocular alignment that is associated with a spectrum of perceptual deficits and social disadvantages. Current treatments for strabismus involve ocular alignment through surgical or optical methods and may include vision therapy exercises. In the present study, we explore the potential of real-time dichoptic visual feedback that may be used to quantify and manipulate interocular alignment. A gaze-contingent ring was presented independently to each eye of 11 normally-sighted observers as they fixated a target dot presented only to their dominant eye. Their task was to center the rings within 2° of the target for at least 1 s, with feedback provided by the sizes of the rings. By offsetting the ring in the non-dominant eye temporally or nasally, this task required convergence or divergence, respectively, of the non-dominant eye. Eight of 11 observers attained 5° asymmetric convergence and 3 of 11 attained 3° asymmetric divergence. The results suggest that real-time gaze-contingent feedback may be used to quantify and transiently simulate strabismus and holds promise as a method to augment existing therapies for oculomotor alignment disorders.


Assuntos
Movimentos Oculares/fisiologia , Retroalimentação , Músculos Oculomotores/fisiologia , Limiar Sensorial , Estrabismo/fisiopatologia , Visão Binocular/fisiologia , Acuidade Visual/fisiologia , Sensibilidades de Contraste , Feminino , Humanos , Masculino , Estimulação Luminosa , Análise e Desempenho de Tarefas , Percepção Visual
9.
J Neurosci ; 39(15): 2877-2888, 2019 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-30733219

RESUMO

Humans and many animals make frequent saccades requiring coordinated movements of the eyes. When landing on the new fixation point, the eyes must converge accurately or double images will be perceived. We asked whether the visual system uses statistical regularities in the natural environment to aid eye alignment at the end of saccades. We measured the distribution of naturally occurring disparities in different parts of the visual field. The central tendency of the distributions was crossed (nearer than fixation) in the lower field and uncrossed (farther) in the upper field in male and female participants. It was uncrossed in the left and right fields. We also measured horizontal vergence after completion of vertical, horizontal, and oblique saccades. When the eyes first landed near the eccentric target, vergence was quite consistent with the natural-disparity distribution. For example, when making an upward saccade, the eyes diverged to be aligned with the most probable uncrossed disparity in that part of the visual field. Likewise, when making a downward saccade, the eyes converged to enable alignment with crossed disparity in that part of the field. Our results show that rapid binocular eye movements are adapted to the statistics of the 3D environment, minimizing the need for large corrective vergence movements at the end of saccades. The results are relevant to the debate about whether eye movements are derived from separate saccadic and vergence neural commands that control both eyes or from separate monocular commands that control the eyes independently.SIGNIFICANCE STATEMENT We show that the human visual system incorporates statistical regularities in the visual environment to enable efficient binocular eye movements. We define the oculomotor horopter: the surface of 3D positions to which the eyes initially move when stimulated by eccentric targets. The observed movements maximize the probability of accurate fixation as the eyes move from one position to another. This is the first study to show quantitatively that binocular eye movements conform to 3D scene statistics, thereby enabling efficient processing. The results provide greater insight into the neural mechanisms underlying the planning and execution of saccadic eye movements.


Assuntos
Adaptação Fisiológica/fisiologia , Meio Ambiente , Movimentos Oculares/fisiologia , Visão Binocular/fisiologia , Adulto , Convergência Ocular/fisiologia , Feminino , Fixação Ocular , Lateralidade Funcional/fisiologia , Humanos , Masculino , Músculos Oculomotores/inervação , Músculos Oculomotores/fisiologia , Movimentos Sacádicos , Disparidade Visual/fisiologia , Campos Visuais , Adulto Jovem
10.
Sci Data ; 4: 170034, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28350382

RESUMO

Binocular stereopsis is the ability of a visual system, belonging to a live being or a machine, to interpret the different visual information deriving from two eyes/cameras for depth perception. From this perspective, the ground-truth information about three-dimensional visual space, which is hardly available, is an ideal tool both for evaluating human performance and for benchmarking machine vision algorithms. In the present work, we implemented a rendering methodology in which the camera pose mimics realistic eye pose for a fixating observer, thus including convergent eye geometry and cyclotorsion. The virtual environment we developed relies on highly accurate 3D virtual models, and its full controllability allows us to obtain the stereoscopic pairs together with the ground-truth depth and camera pose information. We thus created a stereoscopic dataset: GENUA PESTO-GENoa hUman Active fixation database: PEripersonal space STereoscopic images and grOund truth disparity. The dataset aims to provide a unified framework useful for a number of problems relevant to human and computer vision, from scene exploration and eye movement studies to 3D scene reconstruction.


Assuntos
Algoritmos , Percepção de Profundidade , Humanos , Disparidade Visual
11.
Sci Rep ; 7: 44800, 2017 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-28317909

RESUMO

Depth perception in near viewing strongly relies on the interpretation of binocular retinal disparity to obtain stereopsis. Statistical regularities of retinal disparities have been claimed to greatly impact on the neural mechanisms that underlie binocular vision, both to facilitate perceptual decisions and to reduce computational load. In this paper, we designed a novel and unconventional approach in order to assess the role of fixation strategy in conditioning the statistics of retinal disparity. We integrated accurate realistic three-dimensional models of natural scenes with binocular eye movement recording, to obtain accurate ground-truth statistics of retinal disparity experienced by a subject in near viewing. Our results evidence how the organization of human binocular visual system is finely adapted to the disparity statistics characterizing actual fixations, thus revealing a novel role of the active fixation strategy over the binocular visual functionality. This suggests an ecological explanation for the intrinsic preference of stereopsis for a close central object surrounded by a far background, as an early binocular aspect of the figure-ground segregation process.


Assuntos
Percepção de Profundidade , Disparidade Visual , Meio Ambiente , Movimentos Oculares , Humanos , Visão Binocular
12.
Behav Res Methods ; 49(3): 923-946, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27401169

RESUMO

The Tobii Eyex Controller is a new low-cost binocular eye tracker marketed for integration in gaming and consumer applications. The manufacturers claim that the system was conceived for natural eye gaze interaction, does not require continuous recalibration, and allows moderate head movements. The Controller is provided with a SDK to foster the development of new eye tracking applications. We review the characteristics of the device for its possible use in scientific research. We develop and evaluate an open source Matlab Toolkit that can be employed to interface with the EyeX device for gaze recording in behavioral experiments. The Toolkit provides calibration procedures tailored to both binocular and monocular experiments, as well as procedures to evaluate other eye tracking devices. The observed performance of the EyeX (i.e. accuracy < 0.6°, precision < 0.25°, latency < 50 ms and sampling frequency ≈55 Hz), is sufficient for some classes of research application. The device can be successfully employed to measure fixation parameters, saccadic, smooth pursuit and vergence eye movements. However, the relatively low sampling rate and moderate precision limit the suitability of the EyeX for monitoring micro-saccadic eye movements or for real-time gaze-contingent stimulus control. For these applications, research grade, high-cost eye tracking technology may still be necessary. Therefore, despite its limitations with respect to high-end devices, the EyeX has the potential to further the dissemination of eye tracking technology to a broad audience, and could be a valuable asset in consumer and gaming applications as well as a subset of basic and clinical research settings.


Assuntos
Equipamentos e Provisões , Movimentos Oculares/fisiologia , Software , Humanos
13.
Acad Radiol ; 22(1): 58-69, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25481516

RESUMO

RATIONALE AND OBJECTIVES: Tissue perfusion is commonly used to evaluate lung tumor lesions through dynamic contrast-enhanced computed tomography (DCE-CT). The aim of this study was to improve the reliability of the blood flow (BF) maps by means of a guided sampling of the tissue time-concentration curves (TCCs). MATERIALS AND METHODS: Fourteen selected CT perfusion (CTp) examinations from different patients with lung lesions were considered, according to different degrees of motion compensation. For each examination, two regions of interest (ROIs) referring to the target lesion and the arterial input were manually segmented. To obtain the perfusion parameters, we computed the maximum slope of the Hill equation, describing the pharmacokinetics of the contrast agent, and the TCC was fitted for each voxel. A guided iterative approach based on the Random Sample Consensus method was used to detect and exclude samples arising from motion artifacts through the assessment of the confidence level of each single temporal sample of the TCC compared to the model. Removing these samples permits to refine the model fitting, thus exploiting more reliable data. Goodness-of-fit measures of the fitted TCCs to the original data (eg, root mean square error and correlation distance) were used to assess the reliability of the BF values, so as to preserve the functional structure of the resulting perfusion map. We devised a quantitative index, the local coefficient of variation (lCV), to measure the spatial coherence of perfusion maps, from local to regional and global resolution. The effectiveness of the algorithm was tested under three different degrees of motion yielded by as many alignment procedures. RESULTS: At pixel level, the proposed approach improved the reliability of BF values, quantitatively assessed through the correlation index. At ROI level, a comparative analysis emphasized how our approach "replaced" the noisy pixels, providing smoother parametric maps while preserving the main functional structure. Moreover, the implemented algorithm provides a more meaningful effect in correspondence of a higher motion degree. This was confirmed both quantitatively, using the lCV, and qualitatively, through visual inspection by expert radiologists. CONCLUSIONS: Perfusion maps achieved with the proposed approach can now be used as a valid tool supporting radiologists in DCE-CTp studies. This represents a step forward to clinical utilization of these studies for staging, prognosis, and monitoring values of therapeutic regimens.


Assuntos
Artefatos , Iopamidol/análogos & derivados , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/fisiopatologia , Neovascularização Patológica/diagnóstico por imagem , Neovascularização Patológica/fisiopatologia , Tomografia Computadorizada por Raios X/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Angiografia/métodos , Velocidade do Fluxo Sanguíneo , Simulação por Computador , Meios de Contraste/farmacocinética , Interpretação Estatística de Dados , Feminino , Humanos , Iopamidol/farmacocinética , Neoplasias Pulmonares/complicações , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Modelos Biológicos , Movimento (Física) , Neovascularização Patológica/etiologia , Intensificação de Imagem Radiográfica/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Reprodutibilidade dos Testes , Tamanho da Amostra , Sensibilidade e Especificidade
14.
Sensors (Basel) ; 12(2): 1771-99, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22438737

RESUMO

This paper presents an architecture for computing vector disparity for active vision systems as used on robotics applications. The control of the vergence angle of a binocular system allows us to efficiently explore dynamic environments, but requires a generalization of the disparity computation with respect to a static camera setup, where the disparity is strictly 1-D after the image rectification. The interaction between vision and motor control allows us to develop an active sensor that achieves high accuracy of the disparity computation around the fixation point, and fast reaction time for the vergence control. In this contribution, we address the development of a real-time architecture for vector disparity computation using an FPGA device. We implement the disparity unit and the control module for vergence, version, and tilt to determine the fixation point. In addition, two on-chip different alternatives for the vector disparity engines are discussed based on the luminance (gradient-based) and phase information of the binocular images. The multiscale versions of these engines are able to estimate the vector disparity up to 32 fps on VGA resolution images with very good accuracy as shown using benchmark sequences with known ground-truth. The performances in terms of frame-rate, resource utilization, and accuracy of the presented approaches are discussed. On the basis of these results, our study indicates that the gradient-based approach leads to the best trade-off choice for the integration with the active vision system.


Assuntos
Aumento da Imagem/instrumentação , Interpretação de Imagem Assistida por Computador/instrumentação , Reconhecimento Automatizado de Padrão/métodos , Robótica/instrumentação , Transdutores , Gravação em Vídeo/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Retroalimentação , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos
15.
Int J Neural Syst ; 20(4): 267-78, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20726038

RESUMO

We present two neural models for vergence angle control of a robotic head, a simplified and a more complex one. Both models work in a closed-loop manner and do not rely on explicitly computed disparity, but extract the desired vergence angle from the post-processed response of a population of disparity tuned complex cells, the actual gaze direction and the actual vergence angle. The first model assumes that the gaze direction of the robotic head is orthogonal to its baseline and the stimulus is a frontoparallel plane orthogonal to the gaze direction. The second model goes beyond these assumptions, and operates reliably in the general case where all restrictions on the orientation of the gaze, as well as the stimulus position, type and orientation, are dropped.


Assuntos
Convergência Ocular/fisiologia , Movimentos Oculares/fisiologia , Modelos Neurológicos , Disparidade Visual , Humanos , Robótica , Visão Binocular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA