Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(8): 082501, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38457706

RESUMO

The structure and decay of the most neutron-rich beryllium isotope, ^{16}Be, has been investigated following proton knockout from a high-energy ^{17}B beam. Two relatively narrow resonances were observed for the first time, with energies of 0.84(3) and 2.15(5) MeV above the two-neutron decay threshold and widths of 0.32(8) and 0.95(15) MeV, respectively. These were assigned to be the ground (J^{π}=0^{+}) and first excited (2^{+}) state, with E_{x}=1.31(6) MeV. The mass excess of ^{16}Be was thus deduced to be 56.93(13) MeV, some 0.5 MeV more bound than the only previous measurement. Both states were observed to decay by direct two-neutron emission. Calculations incorporating the evolution of the wave function during the decay as a genuine three-body process reproduced the principal characteristics of the neutron-neutron energy spectra for both levels, indicating that the ground state exhibits a strong spatially compact dineutron component, while the 2^{+} level presents a far more diffuse neutron-neutron distribution.

2.
Phys Rev Lett ; 131(21): 212501, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38072612

RESUMO

The cluster structure of the neutron-rich isotope ^{10}Be has been probed via the (p,pα) reaction at 150 MeV/nucleon in inverse kinematics and in quasifree conditions. The populated states of ^{6}He residues were investigated through missing mass spectroscopy. The triple differential cross section for the ground-state transition was extracted for quasifree angle pairs (θ_{p},θ_{α}) and compared to distorted-wave impulse approximation reaction calculations performed in a microscopic framework using successively the Tohsaki-Horiuchi-Schuck-Röpke product wave function and the wave function deduced from antisymmetrized molecular dynamics calculations. The remarkable agreement between calculated and measured cross sections in both shape and magnitude validates the molecular structure description of the ^{10}Be ground-state, configured as an α-α core with two valence neutrons occupying π-type molecular orbitals.

4.
Phys Rev Lett ; 131(9): 092501, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37721823

RESUMO

The last proton bound calcium isotope ^{35}Ca has been studied for the first time, using the ^{37}Ca(p,t)^{35}Ca two neutron transfer reaction. The radioactive ^{37}Ca nuclei, produced by the LISE spectrometer at GANIL, interacted with the protons of the liquid hydrogen target CRYPTA, to produce tritons t that were detected in the MUST2 detector array, in coincidence with the heavy residues Ca or Ar. The atomic mass of ^{35}Ca and the energy of its first 3/2^{+} state are reported. A large N=16 gap of 4.61(11) MeV is deduced from the mass measurement, which together with other measured properties, makes ^{36}Ca a doubly magic nucleus. The N=16 shell gaps in ^{36}Ca and ^{24}O are of similar amplitude, at both edges of the valley of stability. This feature is discussed in terms of nuclear forces involved, within state-of-the-art shell model calculations. Even though the global agreement with data is quite convincing, the calculations underestimate the size of the N=16 gap in ^{36}Ca by 840 keV.

5.
Nature ; 620(7976): 965-970, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37648757

RESUMO

Subjecting a physical system to extreme conditions is one of the means often used to obtain a better understanding and deeper insight into its organization and structure. In the case of the atomic nucleus, one such approach is to investigate isotopes that have very different neutron-to-proton (N/Z) ratios than in stable nuclei. Light, neutron-rich isotopes exhibit the most asymmetric N/Z ratios and those lying beyond the limits of binding, which undergo spontaneous neutron emission and exist only as very short-lived resonances (about 10-21 s), provide the most stringent tests of modern nuclear-structure theories. Here we report on the first observation of 28O and 27O through their decay into 24O and four and three neutrons, respectively. The 28O nucleus is of particular interest as, with the Z = 8 and N = 20 magic numbers1,2, it is expected in the standard shell-model picture of nuclear structure to be one of a relatively small number of so-called 'doubly magic' nuclei. Both 27O and 28O were found to exist as narrow, low-lying resonances and their decay energies are compared here to the results of sophisticated theoretical modelling, including a large-scale shell-model calculation and a newly developed statistical approach. In both cases, the underlying nuclear interactions were derived from effective field theories of quantum chromodynamics. Finally, it is shown that the cross-section for the production of 28O from a 29F beam is consistent with it not exhibiting a closed N = 20 shell structure.

6.
Phys Rev Lett ; 130(17): 172501, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37172241

RESUMO

We report on the first proton-induced single proton- and neutron-removal reactions from the neutron-deficient ^{14}O nucleus with large Fermi-surface asymmetry S_{n}-S_{p}=18.6 MeV at ∼100 MeV/nucleon, a widely used energy regime for rare-isotope studies. The measured inclusive cross sections and parallel momentum distributions of the ^{13}N and ^{13}O residues are compared to the state-of-the-art reaction models, with nuclear structure inputs from many-body shell-model calculations. Our results provide the first quantitative contributions of multiple reaction mechanisms including the quasifree knockout, inelastic scattering, and nucleon transfer processes. It is shown that the inelastic scattering and nucleon transfer, usually neglected at such energy regime, contribute about 50% and 30% to the loosely bound proton and deeply bound neutron removal, respectively. These multiple reaction mechanisms should be considered in analyses of inclusive one-nucleon removal cross sections measured at intermediate energies for quantitative investigation of single-particle strengths and correlations in atomic nuclei.

7.
Phys Rev Lett ; 129(12): 122501, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36179171

RESUMO

Detailed spectroscopy of the neutron-deficient nucleus ^{36}Ca was obtained up to 9 MeV using the ^{37}Ca(p,d)^{36}Ca and the ^{38}Ca(p,t)^{36}Ca transfer reactions. The radioactive nuclei, produced by the LISE spectrometer at GANIL, interacted with the protons of the liquid hydrogen target CRYPTA, to produce light ejectiles (the deuteron d or triton t) that were detected in the MUST2 detector array, in coincidence with the heavy residues identified by a zero-degree detection system. Our main findings are (i) a similar shift in energy for the 1_{1}^{+} and 2_{1}^{+} states by about -250 keV, as compared with the mirror nucleus ^{36}S; (ii) the discovery of an intruder 0_{2}^{+} state at 2.83(13) MeV, which appears below the first 2^{+} state, in contradiction with the situation in ^{36}S; and (iii) a tentative 0_{3}^{+} state at 4.83(17) MeV, proposed to exhibit a bubble structure with two neutron vacancies in the 2s_{1/2} orbit. The inversion between the 0_{2}^{+} and 2_{1}^{+} states is due to the large mirror energy difference (MED) of -516(130) keV for the former. This feature is reproduced by shell model calculations, using the sd-pf valence space, predicting an almost pure intruder nature for the 0_{2}^{+} state, with two protons (neutrons) being excited across the Z=20 magic closure in ^{36}Ca (^{36}S). This mirror system has the largest MEDs ever observed, if one excludes the few cases induced by the effect of the continuum.

8.
Nature ; 606(7915): 678-682, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35732764

RESUMO

A long-standing question in nuclear physics is whether chargeless nuclear systems can exist. To our knowledge, only neutron stars represent near-pure neutron systems, where neutrons are squeezed together by the gravitational force to very high densities. The experimental search for isolated multi-neutron systems has been an ongoing quest for several decades1, with a particular focus on the four-neutron system called the tetraneutron, resulting in only a few indications of its existence so far2-4, leaving the tetraneutron an elusive nuclear system for six decades. Here we report on the observation of a resonance-like structure near threshold in the four-neutron system that is consistent with a quasi-bound tetraneutron state existing for a very short time. The measured energy and width of this state provide a key benchmark for our understanding of the nuclear force. The use of an experimental approach based on a knockout reaction at large momentum transfer with a radioactive high-energy 8He beam was key.

9.
Phys Rev Lett ; 129(26): 262501, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36608181

RESUMO

The one-neutron knockout from ^{52}Ca in inverse kinematics onto a proton target was performed at ∼230 MeV/nucleon combined with prompt γ spectroscopy. Exclusive quasifree scattering cross sections to bound states in ^{51}Ca and the momentum distributions corresponding to the removal of 1f_{7/2} and 2p_{3/2} neutrons were measured. The cross sections, interpreted within the distorted-wave impulse approximation reaction framework, are consistent with a shell closure at the neutron number N=32, found as strong as at N=28 and N=34 in Ca isotopes from the same observables. The analysis of the momentum distributions leads to a difference of the root-mean-square radii of the neutron 1f_{7/2} and 2p_{3/2} orbitals of 0.61(23) fm, in agreement with the modified-shell-model prediction of 0.7 fm suggesting that the large root-mean-square radius of the 2p_{3/2} orbital in neutron-rich Ca isotopes is responsible for the unexpected linear increase of the charge radius with the neutron number.

10.
Phys Rev Lett ; 126(25): 252501, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34241497

RESUMO

Direct proton-knockout reactions of ^{55}Sc at ∼220 MeV/nucleon were studied at the RIKEN Radioactive Isotope Beam Factory. Populated states of ^{54}Ca were investigated through γ-ray and invariant-mass spectroscopy. Level energies were calculated from the nuclear shell model employing a phenomenological internucleon interaction. Theoretical cross sections to states were calculated from distorted-wave impulse approximation estimates multiplied by the shell model spectroscopic factors, which describe the wave function overlap of the ^{55}Sc ground state with states in ^{54}Ca. Despite the calculations showing a significant amplitude of excited neutron configurations in the ground-state of ^{55}Sc, valence proton removals populated predominantly the ground state of ^{54}Ca. This counterintuitive result is attributed to pairing effects leading to a dominance of the ground-state spectroscopic factor. Owing to the ubiquity of the pairing interaction, this argument should be generally applicable to direct knockout reactions from odd-even to even-even nuclei.

11.
Phys Rev Lett ; 126(8): 082501, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33709737

RESUMO

A kinematically complete quasifree (p,pn) experiment in inverse kinematics was performed to study the structure of the Borromean nucleus ^{17}B, which had long been considered to have a neutron halo. By analyzing the momentum distributions and exclusive cross sections, we obtained the spectroscopic factors for 1s_{1/2} and 0d_{5/2} orbitals, and a surprisingly small percentage of 9(2)% was determined for 1s_{1/2}. Our finding of such a small 1s_{1/2} component and the halo features reported in prior experiments can be explained by the deformed relativistic Hartree-Bogoliubov theory in continuum, revealing a definite but not dominant neutron halo in ^{17}B. The present work gives the smallest s- or p-orbital component among known nuclei exhibiting halo features and implies that the dominant occupation of s or p orbitals is not a prerequisite for the occurrence of a neutron halo.

12.
Phys Rev Lett ; 124(21): 212503, 2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32530691

RESUMO

The heaviest bound isotope of boron ^{19}B has been investigated using exclusive measurements of its Coulomb dissociation, into ^{17}B and two neutrons, in collisions with Pb at 220 MeV/nucleon. Enhanced electric dipole (E1) strength is observed just above the two-neutron decay threshold with an integrated E1 strength of B(E1)=1.64±0.06(stat)±0.12(sys) e^{2} fm^{2} for relative energies below 6 MeV. This feature, known as a soft E1 excitation, provides the first firm evidence that ^{19}B has a prominent two-neutron halo. Three-body calculations that reproduce the energy spectrum indicate that the valence neutrons have a significant s-wave configuration and exhibit a dineutronlike correlation.

13.
Phys Rev Lett ; 124(15): 152502, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32357034

RESUMO

Detailed spectroscopy of the neutron-unbound nucleus ^{28}F has been performed for the first time following proton/neutron removal from ^{29}Ne/^{29}F beams at energies around 230 MeV/nucleon. The invariant-mass spectra were reconstructed for both the ^{27}F^{(*)}+n and ^{26}F^{(*)}+2n coincidences and revealed a series of well-defined resonances. A near-threshold state was observed in both reactions and is identified as the ^{28}F ground state, with S_{n}(^{28}F)=-199(6) keV, while analysis of the 2n decay channel allowed a considerably improved S_{n}(^{27}F)=1620(60) keV to be deduced. Comparison with shell-model predictions and eikonal-model reaction calculations have allowed spin-parity assignments to be proposed for some of the lower-lying levels of ^{28}F. Importantly, in the case of the ground state, the reconstructed ^{27}F+n momentum distribution following neutron removal from ^{29}F indicates that it arises mainly from the 1p_{3/2} neutron intruder configuration. This demonstrates that the island of inversion around N=20 includes ^{28}F, and most probably ^{29}F, and suggests that ^{28}O is not doubly magic.

14.
Phys Rev Lett ; 125(25): 252501, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416401

RESUMO

The formation of a dineutron in the ^{11}Li nucleus is found to be localized to the surface region. The experiment measured the intrinsic momentum of the struck neutron in ^{11}Li via the (p,pn) knockout reaction at 246 MeV/nucleon. The correlation angle between the two neutrons is, for the first time, measured as a function of the intrinsic neutron momentum. A comparison with reaction calculations reveals the localization of the dineutron at r∼3.6 fm. The results also support the density dependence of dineutron formation as deduced from Hartree-Fock-Bogoliubov calculations for nuclear matter.

15.
Phys Rev Lett ; 121(26): 262502, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30636115

RESUMO

The most neutron-rich boron isotopes ^{20}B and ^{21}B have been observed for the first time following proton removal from ^{22}N and ^{22}C at energies around 230 MeV/nucleon. Both nuclei were found to exist as resonances which were detected through their decay into ^{19}B and one or two neutrons. Two-proton removal from ^{22}N populated a prominent resonancelike structure in ^{20}B at around 2.5 MeV above the one-neutron decay threshold, which is interpreted as arising from the closely spaced 1^{-},2^{-} ground-state doublet predicted by the shell model. In the case of proton removal from ^{22}C, the ^{19}B plus one- and two-neutron channels were consistent with the population of a resonance in ^{21}B 2.47±0.19 MeV above the two-neutron decay threshold, which is found to exhibit direct two-neutron decay. The ground-state mass excesses determined for ^{20,21}B are found to be in agreement with mass surface extrapolations derived within the latest atomic-mass evaluations.

16.
Phys Rev Lett ; 116(10): 102503, 2016 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-27015476

RESUMO

The unbound nucleus ^{26}O has been investigated using invariant-mass spectroscopy following one-proton removal reaction from a ^{27}F beam at 201 MeV/nucleon. The decay products, ^{24}O and two neutrons, were detected in coincidence using the newly commissioned SAMURAI spectrometer at the RIKEN Radioactive Isotope Beam Factory. The ^{26}O ground-state resonance was found to lie only 18±3(stat)±4(syst) keV above threshold. In addition, a higher lying level, which is most likely the first 2^{+} state, was observed for the first time at 1.28_{-0.08}^{+0.11} MeV above threshold. Comparison with theoretical predictions suggests that three-nucleon forces, pf-shell intruder configurations, and the continuum are key elements to understanding the structure of the most neutron-rich oxygen isotopes beyond the drip line.

17.
Phys Rev Lett ; 113(3): 032504, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-25083638

RESUMO

The isoscalar monopole response has been measured in the unstable nucleus (68)Ni using inelastic alpha scattering at 50A MeV in inverse kinematics with the active target MAYA at GANIL. The isoscalar giant monopole resonance (ISGMR) centroid was determined to be 21.1 ± 1.9 MeV and indications for a soft monopole mode are provided for the first time at 12.9 ± 1.0 MeV. Analysis of the corresponding angular distributions using distorted-wave-born approximation with random-phase approximation transition densities indicates that the L = 0 multipolarity dominates the cross section for the ISGMR and significantly contributes to the low-energy mode. The L=0 part of this low-energy mode, the soft monopole mode, is dominated by neutron excitations. This demonstrates the relevance of inelastic alpha scattering in inverse kinematics in order to probe both the ISGMR and isoscalar soft modes in neutron-rich nuclei.

18.
Phys Rev Lett ; 112(14): 142501, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24765946

RESUMO

The halo structure of 31Ne is studied using 1n-removal reactions on C and Pb targets at 230 MeV/nucleon. A combined analysis of the cross sections of these nuclear and Coulomb dominated reactions that feed directly the 30Ne ground-state reveals 31Ne to have a small neutron separation energy, 0.15(-0.10)(+0.16) MeV, and spin-parity 3/2-. Consistency of the data with reaction and large-scale shell-model calculations identifies 31Ne as deformed and having a significant p-wave halo component, suggesting that halos are more frequent occurrences at the neutron drip line.

19.
Phys Rev Lett ; 112(4): 042502, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24580444

RESUMO

Energies and spectroscopic factors of the first 7/2-, 3/2-, 1/2-, and 5/2- states in the (35)Si21 nucleus were determined by means of the (d, p) transfer reaction in inverse kinematics at GANIL using the MUST2 and EXOGAM detectors. By comparing the spectroscopic information on the Si35 and S37 isotones, a reduction of the p3/2-p1/2 spin-orbit splitting by about 25% is proposed, while the f7/2-f5/2 spin-orbit splitting seems to remain constant. These features, derived after having unfolded nuclear correlations using shell model calculations, have been attributed to the properties of the two-body spin-orbit interaction, the amplitude of which is derived for the first time in an atomic nucleus. The present results, remarkably well reproduced by using several realistic nucleon-nucleon forces, provide a unique touchstone for the modeling of the spin-orbit interaction in atomic nuclei.

20.
Phys Rev Lett ; 110(12): 122503, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-25166799

RESUMO

Single nucleon pickup reactions were performed with a 18.1 MeV/nucleon (14)O beam on a deuterium target. Within the coupled reaction channel framework, the measured cross sections were compared to theoretical predictions and analyzed using both phenomenological and microscopic overlap functions. The missing strength due to correlations does not show significant dependence on the nucleon separation energy asymmetry over a wide range of 37 MeV, in contrast with nucleon removal data analyzed within the sudden-eikonal formalism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA