Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1225283, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600176

RESUMO

Fusarium crown rot (FCR) causes significant grain yield loss in winter cereals around the world. Breeding for resistance and/or tolerance to FCR has been slow with relatively limited success. In this study, multi-species experiments were used to demonstrate an improved method to quantify FCR infection levels at plant maturity using quantitative PCR (qPCR), as well as the genotype yield retention using residual regression deviation. Using qPCR to measure FCR infection allowed a higher degree of resolution between genotypes than traditional visual stem basal browning assessments. The results were consistent across three environments with different levels of disease expression. The improved measure of FCR infection along with genotype yield retention allows for partitioning of both tolerance and partial resistance. Together these methods offer new insights into FCR partial resistance and its relative importance to tolerance in bread wheat and barley. This new approach offers a more robust, unbiased way to select for both FCR traits within breeding programs. Key message: Genetic gain for tolerance and partial resistance against Fusarium crown rot (FCR) in winter cereals has been impeded by laborious and variable visual measures of infection severity. This paper presents results of an improved method to quantify FCR infection that are strongly correlated to yield loss and reveal previously unrecognised partial resistance in barley and wheat varieties.

2.
Fungal Genet Biol ; 136: 103314, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31809785

RESUMO

Fusarium pseudograminearum (Fp), the causative fungal pathogen of the diseases Fusarium crown rot, is an important constraint to cereals production in many countries including Australia. Fp produces a number of secondary metabolites throughout its life cycle. One of these metabolites, the cyclic lipopeptide fusaristatin A, is encoded by a specific gene cluster containing a polyketide synthase and a three-module non-ribosomal peptide synthetase. However, a recent survey of Fp populations across Australia suggests that this cluster may only be present in a subset of isolates from Western Australia (WA). In this study, we screened 319 Fp isolates from WA and 110 Fp isolates from the Australian eastern states of New South Wales, Victoria, Queensland and South Australia to examine the distribution of this gene cluster among Australian Fp populations. The fusaristatin A gene cluster was found to be present in ~50% of Fp isolates from WA but completely absent in Fp isolates from eastern states. To determine its potential function, mutants of the fusaristatin A gene cluster were generated by disrupting the non-ribosomal peptide synthetase and polyketide synthase genes simultaneously in two different parental backgrounds. The mutants showed increased growth rates and were significantly more aggressive than their respective parental strains on wheat in crown rot pathogenicity assays. This suggested that fusaristatin A has a negative effect on fungal development and aggressiveness. The possible reasons for the geographically restricted presence of the fusaristatin A gene cluster and its role in fungal biology are discussed.


Assuntos
Depsipeptídeos/biossíntese , Fusarium/crescimento & desenvolvimento , Fusarium/genética , Triticum/microbiologia , Austrália , DNA Fúngico , Grão Comestível/microbiologia , Proteínas Fúngicas , Fusarium/patogenicidade , Técnicas de Inativação de Genes , Interações entre Hospedeiro e Microrganismos , Família Multigênica , Peptídeo Sintases/genética , Doenças das Plantas/microbiologia , Policetídeo Sintases/genética
3.
Syst Appl Microbiol ; 32(8): 549-57, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19748753

RESUMO

Strains of Xanthomonas translucens have caused dieback in the Australian pistachio industry for the last 15 years. Such pathogenicity to a dicotyledonous woody host contrasts with that of other pathovars of X. translucens, which are characterized by their pathogenicity to monocotyledonous plant families. Further investigations, using DNA-DNA hybridization, gyrB gene sequencing and integron screening, were conducted to confirm the taxonomic status of the X. translucens pathogenic to pistachio. DNA-DNA hybridization provided a clear classification, at the species level, of the pistachio pathogen as a X. translucens. In the gyrB-based phylogeny, strains of the pistachio pathogen clustered among the X. translucens pathovars as two distinct lineages. Integron screening revealed that the cassette arrays of strains of the pistachio pathogen were different from those of other Xanthomonas species, and again distinguished two groups. Together with previously reported pathogenicity data, these results confirm that the pistachio pathogen is a new pathovar of X. translucens and allow hypotheses about its origin. The proposed name is Xanthomonas translucens pv. pistaciae pv. nov.


Assuntos
Pistacia/microbiologia , Xanthomonas/genética , Proteínas de Bactérias/genética , Análise por Conglomerados , DNA Girase/genética , Integrons/genética , Hibridização de Ácido Nucleico , Filogenia , Xanthomonas/classificação , Xanthomonas/patogenicidade
4.
J Virol Methods ; 110(1): 91-7, 2003 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-12757925

RESUMO

Potato mop-top virus (PMTV, Pomovirus) is difficult to detect because it is unevenly distributed and present at low concentration in infected tissues. The production of PMTV-free seed relies on sensitive and specific detection methods of virus detection, including serological methods. The possibility of using a PMTV recombinant coat protein (CP) as an antigen for antiserum production was investigated. The region encoding the PMTV CP was inserted into pET3A, expressed in Escherichia coli, and the recombinant PMTV CP produced was used to raise antibodies in rabbits. Three antisera were produced. All recognised efficiently the recombinant CP in Western blot analysis and the most sensitive antiserum (H5003) detected native CP on Western blots and in ELISA. Thus, recombinant CP can be used as an alternative to purified virus for the production of specific antibodies against PMTV.


Assuntos
Anticorpos Antivirais/imunologia , Proteínas do Capsídeo/biossíntese , Proteínas do Capsídeo/imunologia , Escherichia coli/genética , Vírus de Plantas , Vírus de RNA , Solanum tuberosum/virologia , Animais , Anticorpos Antivirais/biossíntese , Western Blotting , Proteínas do Capsídeo/genética , Clonagem Molecular , Ensaio de Imunoadsorção Enzimática , Escherichia coli/metabolismo , Imunização , Doenças das Plantas/virologia , Vírus de Plantas/genética , Vírus de Plantas/imunologia , Vírus de Plantas/isolamento & purificação , Vírus de RNA/genética , Vírus de RNA/imunologia , Vírus de RNA/isolamento & purificação , Coelhos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/imunologia , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA