Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 699
Filtrar
1.
Lett Appl Microbiol ; 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816215

RESUMO

GABA is an inhibitory neurotransmitter of the central nervous system that impacts physical and mental health. Low GABA levels have been documented in several diseases, including multiple sclerosis and depression, and studies suggest that GABA could improve disease outcomes in those conditions. Probiotic bacteria naturally produce GABA and have been engineered to enhance its synthesis. Strains engineered thus far use inducible expression systems that require the addition of exogenous molecules, which complicates their development as therapeutics. This study aimed to overcome this challenge by engineering Lactococcus lactis with a constitutive GABA synthesis gene cassette. GABA synthesizing and transport genes (gadB and gadC) were cloned onto plasmids downstream of constitutive L. lactis promoters (P2, P5, and P8s) of different strengths and transformed into L. lactis. Fold increase in gadCB expression conferred by these promoters (P2, P5, and P8s) was 322, 422, and 627, respectively, compared to the unmodified strain (P = 0.0325, P8s). GABA synthesis in the highest gadCB expressing strain, L. lactis P8s-GAD, was dependent on media supplementation with glutamic acid and significantly higher than the unmodified strain (P < 0.0001, 125 mM, 200 mM glutamic acid). Lactococcus lactis-P8s-GAD is poised for therapeutic testing in animal models of low-GABA-associated disease.

2.
J Neurodev Disord ; 16(1): 21, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658850

RESUMO

BACKGROUND: Succinic semialdehyde dehydrogenase deficiency (SSADHD) represents a model neurometabolic disease at the fulcrum of translational research within the Boston Children's Hospital Intellectual and Developmental Disabilities Research Centers (IDDRC), including the NIH-sponsored natural history study of clinical, neurophysiological, neuroimaging, and molecular markers, patient-derived induced pluripotent stem cells (iPSC) characterization, and development of a murine model for tightly regulated, cell-specific gene therapy. METHODS: SSADHD subjects underwent clinical evaluations, neuropsychological assessments, biochemical quantification of γ-aminobutyrate (GABA) and related metabolites, electroencephalography (standard and high density), magnetoencephalography, transcranial magnetic stimulation, magnetic resonance imaging and spectroscopy, and genetic tests. This was parallel to laboratory molecular investigations of in vitro GABAergic neurons derived from induced human pluripotent stem cells (hiPSCs) of SSADHD subjects and biochemical analyses performed on a versatile murine model that uses an inducible and reversible rescue strategy allowing on-demand and cell-specific gene therapy. RESULTS: The 62 SSADHD subjects [53% females, median (IQR) age of 9.6 (5.4-14.5) years] included in the study had a reported symptom onset at ∼ 6 months and were diagnosed at a median age of 4 years. Language developmental delays were more prominent than motor. Autism, epilepsy, movement disorders, sleep disturbances, and various psychiatric behaviors constituted the core of the disorder's clinical phenotype. Lower clinical severity scores, indicating worst severity, coincided with older age (R= -0.302, p = 0.03), as well as age-adjusted lower values of plasma γ-aminobutyrate (GABA) (R = 0.337, p = 0.02) and γ-hydroxybutyrate (GHB) (R = 0.360, p = 0.05). While epilepsy and psychiatric behaviors increase in severity with age, communication abilities and motor function tend to improve. iPSCs, which were differentiated into GABAergic neurons, represent the first in vitro neuronal model of SSADHD and express the neuronal marker microtubule-associated protein 2 (MAP2), as well as GABA. GABA-metabolism in induced GABAergic neurons could be reversed using CRISPR correction of the pathogenic variants or mRNA transfection and SSADHD iPSCs were associated with excessive glutamatergic activity and related synaptic excitation. CONCLUSIONS: Findings from the SSADHD Natural History Study converge with iPSC and animal model work focused on a common disorder within our IDDRC, deepening our knowledge of the pathophysiology and longitudinal clinical course of a complex neurodevelopmental disorder. This further enables the identification of biomarkers and changes throughout development that will be essential for upcoming targeted trials of enzyme replacement and gene therapy.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Deficiências do Desenvolvimento , Células-Tronco Pluripotentes Induzidas , Succinato-Semialdeído Desidrogenase , Adolescente , Animais , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Camundongos , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Neurônios GABAérgicos/metabolismo , Ácido gama-Aminobutírico/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Transtornos do Neurodesenvolvimento/metabolismo , Transtornos do Neurodesenvolvimento/etiologia , Transtornos do Neurodesenvolvimento/genética , Succinato-Semialdeído Desidrogenase/deficiência , Succinato-Semialdeído Desidrogenase/metabolismo , Succinato-Semialdeído Desidrogenase/genética
3.
Mol Genet Metab ; 142(1): 108363, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38452608

RESUMO

Succinic semialdehyde dehydrogenase deficiency (SSADHD) (OMIM #271980) is a rare autosomal recessive metabolic disorder caused by pathogenic variants of ALDH5A1. Deficiency of SSADH results in accumulation of γ-aminobutyric acid (GABA) and other GABA-related metabolites. The clinical phenotype of SSADHD includes a broad spectrum of non-pathognomonic symptoms such as cognitive disabilities, communication and language deficits, movement disorders, epilepsy, sleep disturbances, attention problems, anxiety, and obsessive-compulsive traits. Current treatment options for SSADHD remain supportive, but there are ongoing attempts to develop targeted genetic therapies. This study aimed to create consensus guidelines for the diagnosis and management of SSADHD. Thirty relevant statements were initially addressed by a systematic literature review, resulting in different evidence levels of strength according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) criteria. The highest level of evidence (level A), based on randomized controlled trials, was unavailable for any of the statements. Based on cohort studies, Level B evidence was available for 12 (40%) of the statements. Thereupon, through a process following the Delphi Method and directed by the Appraisal of Guidelines for Research and Evaluation (AGREE II) criteria, expert opinion was sought, and members of an SSADHD Consensus Group evaluated all the statements. The group consisted of neurologists, epileptologists, neuropsychologists, neurophysiologists, metabolic disease specialists, clinical and biochemical geneticists, and laboratory scientists affiliated with 19 institutions from 11 countries who have clinical experience with SSADHD patients and have studied the disorder. Representatives from parent groups were also included in the Consensus Group. An analysis of the survey's results yielded 25 (83%) strong and 5 (17%) weak agreement strengths. These first-of-their-kind consensus guidelines intend to consolidate and unify the optimal care that can be provided to individuals with SSADHD.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Deficiências do Desenvolvimento , Succinato-Semialdeído Desidrogenase , Succinato-Semialdeído Desidrogenase/deficiência , Humanos , Succinato-Semialdeído Desidrogenase/genética , Erros Inatos do Metabolismo dos Aminoácidos/diagnóstico , Erros Inatos do Metabolismo dos Aminoácidos/terapia , Erros Inatos do Metabolismo dos Aminoácidos/genética , Consenso , Ácido gama-Aminobutírico/metabolismo , Guias de Prática Clínica como Assunto
4.
Eur J Psychotraumatol ; 14(2): 2284032, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38073550

RESUMO

Background: The mental health impacts of climate change-related disasters are significant. However, access to mental health services is often limited by the availability of trained clinicians. Although building local community capability for the mental health response is often prioritised in policy settings, the lack of evidence-based programs is problematic. The aim of this study was to test the efficacy of the Skills for Life Adjustment and Resilience programme (SOLAR) delivered by trained local community members following compound disasters (drought, wildfires, pandemic-related lockdowns) in Australia.Method: Thirty-six community members were trained to deliver the SOLAR programme, a skills-based, trauma informed, psychosocial programme. Sixty-six people with anxiety, depression and/or posttraumatic stress symptoms, and impairment were randomised into the SOLAR programme or a Self-Help condition. They were assessed pre, post and two months following the interventions. The SOLAR programme was delivered across five 1-hourly sessions (either face to face or virtually). Those in the Self-Help condition received weekly emails with self-help information including links to online educational videos.Results: Multigroup analyses indicated that participants in the SOLAR condition experienced significantly lower levels of anxiety and depression, and PTSD symptom severity between pre - and post-intervention (T1 to T2), relative to the Self-Help condition, while controlling for scores at intake. These differences were not statistically different at follow-up. The SOLAR programme was associated with large effect size improvements in posttraumatic stress symptoms over time.Conclusion: The SOLAR programme was effective in improving anxiety, depression and posttraumatic stress symptoms over time. However, by follow-up the size of the effect was similar to an active self-help condition. Given the ongoing stressors in the community associated with compounding disasters it may be that booster sessions would have been useful to sustain programme impact.Trial registration: Australian New Zealand Clinical Trials Registry identifier: ACTRN12621000283875..


We tested the efficacy of a brief, skills-based psychosocial programme under randomised controlled conditions following compound disasters.The SOLAR programme was associated with improvements in anxiety, depression and posttraumatic stress symptoms across time.The SOLAR programme may benefit from booster sessions especially where there are ongoing impacts of disaster.


Assuntos
Desastres , Resiliência Psicológica , Humanos , Saúde Mental , Austrália , Ansiedade/terapia
5.
Hum Genet ; 142(12): 1755-1776, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37962671

RESUMO

To investigate the genotype-to-protein-to-phenotype correlations of succinic semialdehyde dehydrogenase deficiency (SSADHD), an inherited metabolic disorder of γ-aminobutyric acid catabolism. Bioinformatics and in silico mutagenesis analyses of ALDH5A1 variants were performed to evaluate their impact on protein stability, active site and co-factor binding domains, splicing, and homotetramer formation. Protein abnormalities were then correlated with a validated disease-specific clinical severity score and neurological, neuropsychological, biochemical, neuroimaging, and neurophysiological metrics. A total of 58 individuals (1:1 male/female ratio) were affected by 32 ALDH5A1 pathogenic variants, eight of which were novel. Compared to individuals with single homotetrameric or multiple homo and heterotetrameric proteins, those predicted not to synthesize any functional enzyme protein had significantly lower expression of ALDH5A1 (p = 0.001), worse overall clinical outcomes (p = 0.008) and specifically more severe cognitive deficits (p = 0.01), epilepsy (p = 0.04) and psychiatric morbidity (p = 0.04). Compared to individuals with predictions of having no protein or a protein impaired in catalytic functions, subjects whose proteins were predicted to be impaired in stability, folding, or oligomerization had a better overall clinical outcome (p = 0.02) and adaptive skills (p = 0.04). The quantity and type of enzyme proteins (no protein, single homotetramers, or multiple homo and heterotetramers), as well as their structural and functional impairments (catalytic or stability, folding, or oligomerization), contribute to phenotype severity in SSADHD. These findings are valuable for assessment of disease prognosis and management, including patient selection for gene replacement therapy. Furthermore, they provide a roadmap to determine genotype-to-protein-to-phenotype relationships in other autosomal recessive disorders.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Criança , Humanos , Masculino , Feminino , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Erros Inatos do Metabolismo dos Aminoácidos/patologia , Deficiências do Desenvolvimento/genética , Fenótipo , Succinato-Semialdeído Desidrogenase/genética , Succinato-Semialdeído Desidrogenase/metabolismo
6.
Phlebology ; : 2683555231212302, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37934910

RESUMO

The core content for a medical specialty outlines the scope of the discipline as well as the categories of knowledge considered essential to practice in the field. It provides a template for the development of curricula for medical school, graduate, and postgraduate education, as well as for creating certification standards. Venous and Lymphatic Medicine (VLM) is a specialty that has benefitted from contributions from specialists from several medical disciplines. Optimally, the societies, boards, and residency review committees representing these disciplines would uniformly recognize the scope of VLM to develop education and assessment standards to allow training and identification of qualified practitioners. In order to inform the standard setting bodies and other stakeholders of the current scope of VLM, a task force of VLM experts from cardiology, dermatology, emergency medicine, general surgery, interventional radiology, vascular medicine, and vascular surgery was formed to revise a 2014 consensus document defining the core content of the specialty of VLM.

7.
Brain Commun ; 5(6): fcad291, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37953848

RESUMO

Succinic semialdehyde dehydrogenase deficiency is a rare autosomal recessively inherited metabolic disorder of γ-aminobutyric acid catabolism manifested by intellectual disability, expressive aphasia, movement disorders, psychiatric ailments and epilepsy. Subjects with succinic semialdehyde dehydrogenase deficiency are characterized by elevated γ-aminobutyric acid and related metabolites, such as γ-guanidinobutyric acid, and an age-dependent downregulation of cerebral γ-aminobutyric acid receptors. These findings indicate impaired γ-aminobutyric acid and γ-aminobutyric acid sub-type A (GABAA) receptor signalling as major factors underlying the pathophysiology of this neurometabolic disorder. We studied the cortical oscillation patterns and their relationship with γ-aminobutyric acid metabolism in 18 children affected by this condition and 10 healthy controls. Using high-density EEG, we recorded somatosensory cortical responses and resting-state activity. Using electrical source imaging, we estimated the relative power changes (compared with baseline) in both stimulus-evoked and stimulus-induced responses for physiologically relevant frequency bands and resting-state power. Stimulus-evoked oscillations are phase locked to the stimulus, whereas induced oscillations are not. Power changes for both evoked and induced responses as well as resting-state power were correlated with plasma γ-aminobutyric acid and γ-guanidinobutyric acid concentrations and with cortical γ-aminobutyric acid measured by proton magnetic resonance spectroscopy. Plasma γ-aminobutyric acid, γ-guanidinobutyric acid and cortical γ-aminobutyric acid were higher in patients than in controls (P < 0.001 for both). Beta and gamma relative power were suppressed for evoked responses in patients versus controls (P < 0.01). No group differences were observed for induced activity (P > 0.05). The mean gamma frequency of evoked responses was lower in patients versus controls (P = 0.002). Resting-state activity was suppressed in patients for theta (P = 0.011) and gamma (P < 0.001) bands. Evoked power changes were inversely correlated with plasma γ-aminobutyric acid and with γ-guanidinobutyric acid for beta (P < 0.001) and gamma (P < 0.001) bands. Similar relationships were observed between the evoked power changes and cortical γ-aminobutyric acid for all tested areas in the beta band (P < 0.001) and for the posterior cingulate gyrus in the gamma band (P < 0.001). We also observed a negative correlation between resting-state activity and plasma γ-aminobutyric acid and γ-guanidinobutyric acid for theta (P < 0.001; P = 0.003), alpha (P = 0.003; P = 0.02) and gamma (P = 0.02; P = 0.01) bands. Our findings indicate that increased γ-aminobutyric acid concentration is associated with reduced sensory-evoked beta and gamma activity and impaired neuronal synchronization in patients with succinic semialdehyde dehydrogenase deficiency. This further elucidates the pathophysiology of this neurometabolic disorder and serves as a potential biomarker for therapeutic trials.

8.
Res Sq ; 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37503297

RESUMO

Objective: To investigate the genotype-to-protein-to-phenotype correlations of succinic semialdehyde dehydrogenase deficiency (SSADHD), an inherited metabolic disorder of γ-aminobutyric acid catabolism. Methods: Bioinformatics and in silico mutagenesis analyses of ALDH5A1 variants were performed to evaluate their impact on protein stability, active site and co-factor binding domains, splicing, and homotetramer formation. Protein abnormalities were then correlated with a validated disease-specific clinical severity score and neurological, neuropsychological, biochemical, neuroimaging, and neurophysiological metrics. Results: A total of 58 individuals (1:1 male/female ratio) were affected by 32 ALDH5A1 pathogenic variants, eight of which were novel. Compared to individuals with single homotetrameric or multiple homo and heterotetrameric proteins, those predicted not to synthesize any functional enzyme protein had significantly lower expression of ALDH5A1 (p = 0.001), worse overall clinical outcomes (p = 0.008) and specifically more severe cognitive deficits (p = 0.01), epilepsy (p = 0.04) and psychiatric morbidity (p = 0.04). Compared to individuals with predictions of having no protein or a protein impaired in catalytic functions, subjects whose proteins were predicted to be impaired in stability, folding, or oligomerization had a better overall clinical outcome (p = 0.02) and adaptive skills (p = 0.04). Conclusions: The quantity and type of enzyme proteins (no protein, single homotetramers, or multiple homo and heterotetramers), as well as their structural and functional impairments (catalytic or stability, folding, or oligomerization), contribute to phenotype severity in SSADHD. These findings are valuable for assessment of disease prognosis and management, including patient selection for gene replacement therapy. Furthermore, they provide a roadmap to determine genotype-to-protein-to-phenotype relationships in other autosomal recessive disorders.

9.
J Inherit Metab Dis ; 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37455357

RESUMO

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare neurometabolic disorder caused by disruption of the gamma-aminobutyric acid (GABA) pathway. A more detailed understanding of its pathophysiology, beyond the accumulation of GABA and gamma-hydroxybutyric acid (GHB), will increase our understanding of the disease and may support novel therapy development. To this end, we compared biochemical body fluid profiles from SSADHD patients with controls using next-generation metabolic screening (NGMS). Targeted analysis of NGMS data from cerebrospinal fluid (CSF) showed a moderate increase of aspartic acid, glutaric acid, glycolic acid, 4-guanidinobutanoic acid, and 2-hydroxyglutaric acid, and prominent elevations of GHB and 4,5-dihydroxyhexanoic acid (4,5-DHHA) in SSADHD samples. Remarkably, the intensities of 4,5-DHHA and GHB showed a significant positive correlation in control CSF, but not in patient CSF. In an established zebrafish epilepsy model, 4,5-DHHA showed increased mobility that may reflect limited epileptogenesis. Using untargeted metabolomics, we identified 12 features in CSF with high biomarker potential. These had comparable increased fold changes as GHB and 4,5-DHHA. For 10 of these features, a similar increase was found in plasma, urine and/or mouse brain tissue for SSADHD compared to controls. One of these was identified as the novel biomarker 4,5-dihydroxyheptanoic acid. The intensities of selected features in plasma and urine of SSADHD patients positively correlated with the clinical severity score of epilepsy and psychiatric symptoms of those patients, and also showed a high mutual correlation. Our findings provide new insights into the (neuro)metabolic disturbances in SSADHD and give leads for further research concerning SSADHD pathophysiology.

10.
J Hosp Infect ; 138: 8-18, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37160232

RESUMO

BACKGROUND: Environmental contamination with meticillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant enterococci (VRE) in skilled nursing facilities (SNFs) may contribute to patient acquisition. This study assessed diversity and association of MRSA and VRE isolates in an SNF wing, and developed a mathematical index to define the tendency of each strain to persist in rooms and spread horizontally. METHODS: This was a longitudinal study of MRSA and VRE colonization and contamination among successive patient occupancies in a cluster of nine SNF private rooms over 8 months, characterized by microbiological testing and whole-genome isolate typing. The 'dispersion index' of a strain was defined as the number of rooms in which it was found (including if it was found in the patient), divided by the average number of times it was found consecutively in the same room. FINDINGS: MRSA (10 strain types) and VRE (seven types) were recovered from the room or patient in 16.4% and 35.6% of the occupancies, respectively. MRSA showed moderate horizontal spread and several episodes of same-room persistence (three distinct strain types) (overall dispersion index 1.08). VRE showed a high tendency towards horizontal spread/new introductions (overall dispersion index 3.25) and only one confirmed episode of persistence. INTERPRETATION: The emerging picture of high diversity among contaminating strains and high likelihood of room persistence despite terminal cleaning (MRSA) and horizontal spread between rooms (VRE) in this setting calls for improved cleaning practices, heightened contact precautions and, most of all, establishment of individually tailored facility screening programmes to enable informed choices based on local, measurable and actionable epidemiologic parameters.


Assuntos
Infecção Hospitalar , Infecções por Bactérias Gram-Positivas , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Enterococos Resistentes à Vancomicina , Humanos , Instituições de Cuidados Especializados de Enfermagem , Infecções por Bactérias Gram-Positivas/microbiologia , Estudos Longitudinais , Infecção Hospitalar/prevenção & controle
11.
J Inherit Metab Dis ; 46(5): 992-1003, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37219411

RESUMO

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is an inherited metabolic disorder with a variable phenotype and rate of progression. We aimed to develop and validate a clinical severity scoring (CSS) system applicable to the clinical setting and composed of five domains reflecting the principal manifestations of this disorder: cognitive, communication, motor, epilepsy, and psychiatry. A prospectively characterized cohort of 27 SSADHD subjects (55% females, median [IQR] age 9.2 [4.6-16.2] years) who enrolled in the SSADHD Natural History Study were included. The CSS was validated by comparison to an objective severity scoring (OSS) system based on comprehensive neuropsychologic and neurophysiologic assessments, which mirror and complement the domains of the CSS. The total CSS was sex and age-independent, and 80% of its domains lacked interdependence. With increasing age, there was a significant improvement in communication abilities (p = 0.05) and a worsening of epilepsy and psychiatric manifestations (p = 0.004 and p = 0.02, respectively). There was a significant correlation between all the CSS and OSS domain scores, as well as between the total CSS and OSS (R = 0.855, p < 0.001). Additionally, there were no significant demographic or clinical differences in the ratio of individuals in the upper quartile to the lower three quartiles of the CSS and OSS. The SSADHD CSS is validated using objective measures and offers a reliable condition-specific instrument universally applicable in clinical settings. This severity score may be utilized for family and patient counseling, genotype-phenotype correlations, biomarker development, clinical trials, and objective descriptions of the natural history of SSADHD.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Epilepsia , Feminino , Masculino , Humanos , Erros Inatos do Metabolismo dos Aminoácidos/genética , Deficiências do Desenvolvimento/genética , Succinato-Semialdeído Desidrogenase , Epilepsia/diagnóstico , Epilepsia/genética
12.
Epilepsia ; 64(6): 1516-1526, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36961285

RESUMO

OBJECTIVE: Succinic semialdehyde dehydrogenase deficiency (SSADHD) is a rare inherited metabolic disorder caused by a defect of γ-aminobutyrate (GABA) catabolism. Despite the resultant hyper-GABAergic environment facilitated by the metabolic defect, individuals with this disorder have a paradoxically high prevalence of epilepsy. We aimed to study the characteristics of epilepsy in SSADHD and its concordance with GABA-related metabolites and neurophysiologic markers of cortical excitation. METHODS: Subjects in an international natural history study of SSADHD underwent clinical assessments, electroencephalography, transcranial magnetic stimulation (TMS), magnetic resonance spectroscopy for GABA/N-acetyl aspartate quantification, and plasma GABA-related metabolite measurements. RESULTS: A total of 61 subjects with SSADHD and 42 healthy controls were included in the study. Epilepsy was present in 49% of the SSADHD cohort. Over time, there was an increase in severity in 33% of the subjects with seizures. The presence of seizures was associated with increasing age (p = .001) and lower levels of GABA (p = .002), γ-hydroxybutyrate (GHB; p = .004), and γ-guanidinobutyrate (GBA; p = .003). Seizure severity was associated with increasing age and lower levels of GABA-related metabolites as well as lower TMS-derived resting motor thresholds (p = .04). The cutoff values with the highest discriminative ability to predict seizures were age > 9.2 years (p = .001), GABA < 2.57 µmol·L-1 (p = .002), GHB < 143.6 µmol·L-1 (p = .004), and GBA < .075 µmol·L-1 (p = .007). A prediction model for seizures in SSADHD was comprised of the additive effect of older age and lower plasma GABA, GHB, and GBA (area under the receiver operating characteristic curve of .798, p = .008). SIGNIFICANCE: Epilepsy is highly prevalent in SSADHD, and its onset and severity correlate with an age-related decline in GABA and GABA-related metabolite levels as well as TMS markers of reduced cortical inhibition. The reduction of GABAergic activity in this otherwise hyper-GABAergic disorder demonstrates a concordance between epileptogenesis and compensatory responses. These findings may furthermore inform the timing of molecular interventions for SSADHD.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Epilepsia , Oxibato de Sódio , Humanos , Criança , Erros Inatos do Metabolismo dos Aminoácidos/complicações , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Deficiências do Desenvolvimento , Epilepsia/metabolismo , Ácido gama-Aminobutírico/metabolismo , Aminobutiratos , Convulsões
13.
Biophys J ; 122(5): 849-867, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36721367

RESUMO

In mammalian cells, all-trans farnesol, a 15-carbon isoprenol, is a product of the mevalonate pathway. It is the natural substrate of alcohol dehydrogenase and a substrate for CYP2E1, two enzymes implicated in ethanol metabolism. Studies have shown that farnesol is present in the human brain and inhibits voltage-gated Ca2+ channels at much lower concentrations than ethanol. Here we show that farnesol modulates the activity of γ-aminobutyric acid type A receptors (GABAARs), some of which also mediate the sedative activity of ethanol. Electrophysiology experiments performed in HEK cells expressing human α1ß3γ2 or α6ß3γ2 GABAARs revealed that farnesol increased chloride currents through positive allosteric modulation of these receptors and showed dependence on both the alcoholic functional group of farnesol and the length of the alkyl chain for activity. In silico studies using long-timescale unbiased all-atom molecular dynamics (MD) simulations of the human α1ß3γ2 GABAA receptors revealed that farnesol modulates the channel by directly binding to the transmembrane neurosteroid-binding site, after partitioning into the surrounding membrane and reaching the receptor by lateral diffusion. Channel activation by farnesol was further characterized by several structural and dynamic variables, such as global twisting of the receptor's extracellular domain, tilting of the transmembrane M2 helices, radius, cross-sectional area, hydration status, and electrostatic potential of the channel pore. Our results expand the pharmacological activities of farnesol to yet another class of ion channels implicated in neurotransmission, thus providing a novel path for understanding and treatment of diseases involving GABAA receptor dysfunction.


Assuntos
Neuroesteroides , Receptores de GABA-A , Humanos , Sítios de Ligação , Farneseno Álcool/farmacologia , Ácido gama-Aminobutírico/farmacologia , Domínios Proteicos , Receptores de GABA-A/metabolismo
14.
J Med Chem ; 65(9): 6656-6676, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35500061

RESUMO

The Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα) is a brain-relevant kinase involved in long-term potentiation and synaptic plasticity. We have recently pinpointed the CaMKIIα hub domain as the long-sought-after high-affinity target of γ-hydroxybutyrate ligands substantiated with a high-resolution cocrystal of 5-hydroxydiclofenac (3). Herein, we employed in silico approaches to rationalize and guide the synthesis and pharmacological characterization of a new series of analogues circumventing chemical stability problems associated with 3. The oxygen-bridged analogue 4d showed mid-nanomolar affinity and notable ligand-induced stabilization effects toward the CaMKIIα hub oligomer. Importantly, 4d displayed superior chemical and metabolic stability over 3 by showing excellent chemical stability in phosphate-buffered saline and high resistance to form reactive intermediates and subsequent sulfur conjugates. Altogether, our study highlights 4d as a new CaMKIIα hub high-affinity ligand with enhanced pharmacokinetic properties, representing a powerful tool compound for allosteric regulation of kinase activity with subtype specificity.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina , Diclofenaco , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Diclofenaco/análogos & derivados , Ligantes , Potenciação de Longa Duração
15.
Clin Immunol ; 235: 108766, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34091018

RESUMO

Farnesol is a 15­carbon organic isoprenol synthesized by plants and mammals with anti-oxidant, anti-inflammatory, and neuroprotective activities. We sought to determine whether farnesol treatment would result in protection against murine experimental autoimmune encephalomyelitis (EAE), a well-established model of multiple sclerosis (MS). We compared disease progression and severity in C57BL/6 mice treated orally with 100 mg/kg/day farnesol solubilized in corn oil to corn-oil treated and untreated EAE mice. Farnesol significantly delayed the onset of EAE (by ~2 days) and dramatically decreased disease severity (~80%) compared to controls. Disease protection by farnesol was associated with a significant reduction in spinal cord infiltration by monocytes-macrophages, dendritic cells, CD4+ T cells, and a significant change in gut microbiota composition, including a decrease in the Firmicutes:Bacteroidetes ratio. The study suggests FOL could protect MS patients against CNS inflammatory demyelination by partially modulating the gut microbiome composition.


Assuntos
Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/prevenção & controle , Farneseno Álcool/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Administração Oral , Animais , Feminino , Camundongos
16.
Mol Genet Metab ; 135(1): 42-46, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34896003

RESUMO

Succinic semialdehyde dehydrogenase deficiency (SSADHD) is an inherited inborn error of the γ-aminobutyric acid (GABA) metabolism pathway. It results from mutations in the ALDH5A1 gene leading to elevated GABA, γ-hydroxybutyric acid (GHB), succinic semialdehyde (SSA), decreased glutamine and alterations in several other metabolites. The phenotype includes developmental and cognitive delays, hypotonia, seizures, neuropsychiatric morbidity and other nervous system pathologies. The composition of the intestinal flora of patients with SSADHD has not been characterized, and dysbiosis of the gut microbiome may unveil novel treatment paradigms. We investigated the gut microbiome in SSADHD using 16S ribosomal DNA sequencing and unmasked evidence of dysbiosis in both aldh5a1-deficient mice and patients with SSADHD. In the murine model, there was a reduction in α-diversity measurements, and there were 4 phyla, 3 classes, 5 orders, 9 families, and 15 genera that differed, with a total of 17 predicted metabolic pathways altered. In patients, there were changes in Fusobacterium, 3 classes, 4 orders, 11 families, and a predicted alteration in genes associated with the digestive system. We believe this is the first evaluation of microbiome structure in an IEM with a neurometabolic phenotype that is not treated dietarily.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos , Disbiose , Erros Inatos do Metabolismo dos Aminoácidos/genética , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Animais , Criança , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/metabolismo , Disbiose/genética , Humanos , Camundongos , Succinato-Semialdeído Desidrogenase/deficiência
17.
ACS Omega ; 6(47): 31447-31456, 2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34869971

RESUMO

Many organelles, such as lysosomes and mitochondria, maintain a pH that is different from the cytoplasmic pH. These pH differences have important functional ramifications for those organelles. Many cellular events depend upon a well-compartmentalized distribution of H+ ions spanning the membrane for the optimal function. Cells have developed a variety of mechanisms that enable the regulation of organelle pH. However, the measurement of organellar acidity/alkalinity in living cells has remained a challenge. Currently, most existing probes for the estimation of intracellular pH show a single -organelle targeting capacity. Such probes provide data that fails to comprehensively reveal the pathological and physiological roles and connections between mitochondria and lysosomes in different species. Mitochondrial and lysosomal functions are closely related and important for regulating cellular homeostasis. Accordingly, the design of a single fluorescent probe that can simultaneously target mitochondria and lysosomes is highly desirable, enabling a better understanding of the crosstalk between these organelles. We report the development of a novel fluorescent sensor, rhodamine-coumarin pH probe (RCPP), for detection of organellar acidity/alkalinity. RCPP simultaneously moves between mitochondrion and lysosome subcellular locations, facilitating the simultaneous monitoring of pH alterations in mitochondria and lysosomes.

19.
J Child Neurol ; 36(13-14): 1223-1230, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34463169

RESUMO

Succinic semialdehyde dehydrogenase deficiency (SSADHD), a rare disorder of GABA metabolism, presents with significant neurodevelopmental morbidity. Although there is a growing interest in the concept of quality of life through patient reports as a meaningful outcome in rare disease clinical trials, little is known about the overall impact of SSADHD from the patient/family perspective. The purpose of this study was to determine issues related to quality of life and patient/family experience through a focus group discussion with family caregivers of patients with SSADHD. The discussion included the input of 5 family caregivers, and highlighted concerns related to physical function, cognitive and intellectual function, psychological and behavioral function, social function, and family impact. These themes represent appropriate starting points in the development of a quality-of-life survey that may serve as a meaningful clinical tool in future studies of SSADHD.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/fisiopatologia , Erros Inatos do Metabolismo dos Aminoácidos/psicologia , Deficiências do Desenvolvimento/fisiopatologia , Deficiências do Desenvolvimento/psicologia , Família/psicologia , Inquéritos Epidemiológicos/métodos , Qualidade de Vida/psicologia , Succinato-Semialdeído Desidrogenase/deficiência , Adolescente , Adulto , Erros Inatos do Metabolismo dos Aminoácidos/metabolismo , Criança , Pré-Escolar , Deficiências do Desenvolvimento/metabolismo , Feminino , Grupos Focais , Inquéritos Epidemiológicos/estatística & dados numéricos , Humanos , Masculino , Doenças Raras , Succinato-Semialdeído Desidrogenase/metabolismo , Adulto Jovem , Ácido gama-Aminobutírico/metabolismo
20.
J Phys Chem Lett ; 12(25): 5844-5849, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34138568

RESUMO

Oxygen atoms on transition metal surfaces are highly mobile under the demanding pressures and temperatures typically employed for heterogeneously catalyzed oxidation reactions. This mobility allows for rapid surface diffusion of oxygen atoms, as well as absorption into the subsurface and reemergence to the surface, resulting in variable reactivity. Subsurface oxygen atoms play a unique role in the chemistry of oxidized metal catalysts, yet little is known about how subsurface oxygen is formed or returns to the surface. Furthermore, if oxygen diffusion between the surface and subsurface is mediated by defects, there will be localized changes in the surface chemistry due to the elevated oxygen concentration near the emergence sites. We observed that oxygen atoms emerge preferentially along the boundary between surface phases and that subsurface oxygen is depleted before the surface oxide decomposes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA