Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36747646

RESUMO

The ability to detect and quantify microbiota over time has a plethora of clinical, basic science, and public health applications. One of the primary means of tracking microbiota is through sequencing technologies. When the microorganism of interest is well characterized or known a priori, targeted sequencing is often used. In many applications, however, untargeted bulk (shotgun) sequencing is more appropriate; for instance, the tracking of infection transmission events and nucleotide variants across multiple genomic loci, or studying the role of multiple genes in a particular phenotype. Given these applications, and the observation that pathogens (e.g. Clostridioides difficile, Escherichia coli, Salmonella enterica) and other taxa of interest can reside at low relative abundance in the gastrointestinal tract, there is a critical need for algorithms that accurately track low-abundance taxa with strain level resolution. Here we present a sequence quality- and time-aware model, ChronoStrain, that introduces uncertainty quantification to gauge low-abundance species and significantly outperforms the current state-of-the-art on both real and synthetic data. ChronoStrain leverages sequences' quality scores and the samples' temporal information to produce a probability distribution over abundance trajectories for each strain tracked in the model. We demonstrate Chronostrain's improved performance in capturing post-antibiotic E. coli strain blooms among women with recurrent urinary tract infections (UTIs) from the UTI Microbiome (UMB) Project. Other strain tracking models on the same data either show inconsistent temporal colonization or can only track consistently using very coarse groupings. In contrast, our probabilistic outputs can reveal the relationship between low-confidence strains present in the sample that cannot be reliably assigned a single reference label (either due to poor coverage or novelty) while simultaneously calling high-confidence strains that can be unambiguously assigned a label. We also include and analyze newly sequenced cultured samples from the UMB Project.

2.
Microbiome ; 10(1): 87, 2022 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-35681218

RESUMO

BACKGROUND: Clostridioides difficile infection (CDI) is the most common hospital acquired infection in the USA, with recurrence rates > 15%. Although primary CDI has been extensively linked to gut microbial dysbiosis, less is known about the factors that promote or mitigate recurrence. Moreover, previous studies have not shown that microbial abundances in the gut measured by 16S rRNA amplicon sequencing alone can accurately predict CDI recurrence. RESULTS: We conducted a prospective, longitudinal study of 53 non-immunocompromised participants with primary CDI. Stool sample collection began pre-CDI antibiotic treatment at the time of diagnosis, and continued up to 8 weeks post-antibiotic treatment, with weekly or twice weekly collections. Samples were analyzed using (1) 16S rRNA amplicon sequencing, (2) liquid chromatography/mass-spectrometry metabolomics measuring 1387 annotated metabolites, and (3) short-chain fatty acid profiling. The amplicon sequencing data showed significantly delayed recovery of microbial diversity in recurrent participants, and depletion of key anaerobic taxa at multiple time-points, including Clostridium cluster XIVa and IV taxa. The metabolomic data also showed delayed recovery in recurrent participants, and moreover mapped to pathways suggesting distinct functional abnormalities in the microbiome or host, such as decreased microbial deconjugation activity, lowered levels of endocannabinoids, and elevated markers of host cell damage. Further, using predictive statistical/machine learning models, we demonstrated that the metabolomic data, but not the other data sources, can accurately predict future recurrence at 1 week (AUC 0.77 [0.71, 0.86; 95% interval]) and 2 weeks (AUC 0.77 [0.69, 0.85; 95% interval]) post-treatment for primary CDI. CONCLUSIONS: The prospective, longitudinal, and multi-omic nature of our CDI recurrence study allowed us to uncover previously unrecognized dynamics in the microbiome and host presaging recurrence, and, in particular, to elucidate changes in the understudied gut metabolome. Moreover, we demonstrated that a small set of metabolites can accurately predict future recurrence. Our findings have implications for development of diagnostic tests and treatments that could ultimately short-circuit the cycle of CDI recurrence, by providing candidate metabolic biomarkers for diagnostics development, as well as offering insights into the complex microbial and metabolic alterations that are protective or permissive for recurrence. Video Abstract.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbioma Gastrointestinal , Antibacterianos/uso terapêutico , Clostridioides , Clostridioides difficile/genética , Infecções por Clostridium/terapia , Microbioma Gastrointestinal/genética , Humanos , Estudos Longitudinais , Estudos Prospectivos , RNA Ribossômico 16S/genética , Recidiva
3.
Clin Chem ; 66(12): 1562-1572, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32897389

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected over 21 million people worldwide since August 16, 2020. Compared to PCR and serology tests, SARS-CoV-2 antigen assays are underdeveloped, despite their potential to identify active infection and monitor disease progression. METHODS: We used Single Molecule Array (Simoa) assays to quantitatively detect SARS-CoV-2 spike, S1 subunit, and nucleocapsid antigens in the plasma of patients with coronavirus disease (COVID-19). We studied plasma from 64 patients who were COVID-19 positive, 17 who were COVID-19 negative, and 34 prepandemic patients. Combined with Simoa anti-SARS-CoV-2 serological assays, we quantified changes in 31 SARS-CoV-2 biomarkers in 272 longitudinal plasma samples obtained for 39 patients with COVID-19. Data were analyzed by hierarchical clustering and were compared to longitudinal RT-PCR test results and clinical outcomes. RESULTS: SARS-CoV-2 S1 and N antigens were detectable in 41 out of 64 COVID-19 positive patients. In these patients, full antigen clearance in plasma was observed a mean ± 95% CI of 5 ± 1 days after seroconversion and nasopharyngeal RT-PCR tests reported positive results for 15 ± 5 days after viral-antigen clearance. Correlation between patients with high concentrations of S1 antigen and ICU admission (77%) and time to intubation (within 1 day) was statistically significant. CONCLUSIONS: The reported SARS-CoV-2 Simoa antigen assay is the first to detect viral antigens in the plasma of patients who were COVID-19 positive to date. These data show that SARS-CoV-2 viral antigens in the blood are associated with disease progression, such as respiratory failure, in COVID-19 cases with severe disease.


Assuntos
Anticorpos Antivirais/sangue , Antígenos Virais/sangue , COVID-19/diagnóstico , Progressão da Doença , SARS-CoV-2/química , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , COVID-19/sangue , Teste Sorológico para COVID-19 , Proteínas do Nucleocapsídeo de Coronavírus/sangue , Feminino , Hospitalização , Humanos , Unidades de Terapia Intensiva , Intubação , Limite de Detecção , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/sangue , Prognóstico , Subunidades Proteicas/sangue , Glicoproteína da Espícula de Coronavírus/sangue
4.
Cell Host Microbe ; 25(6): 803-814.e5, 2019 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-31175044

RESUMO

The human gut microbiome is comprised of densely colonizing microorganisms including bacteriophages, which are in dynamic interaction with each other and the mammalian host. To address how bacteriophages impact bacterial communities in the gut, we investigated the dynamic effects of phages on a model microbiome. Gnotobiotic mice were colonized with defined human gut commensal bacteria and subjected to predation by cognate lytic phages. We found that phage predation not only directly impacts susceptible bacteria but also leads to cascading effects on other bacterial species via interbacterial interactions. Metabolomic profiling revealed that shifts in the microbiome caused by phage predation have a direct consequence on the gut metabolome. Our work provides insight into the ecological importance of phages as modulators of bacterial colonization, and it additionally suggests the potential impact of gut phages on the mammalian host with implications for their therapeutic use to precisely modulate the microbiome.


Assuntos
Bacteriólise , Bacteriófagos/crescimento & desenvolvimento , Fezes/química , Microbioma Gastrointestinal , Metaboloma , Animais , Vida Livre de Germes , Camundongos , Interações Microbianas
5.
SIAM J Control Optim ; 56(4): 2463-2484, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31772419

RESUMO

The convergence properties of adaptive systems in terms of excitation conditions on the regressor vector are well known. With persistent excitation of the regressor vector in model reference adaptive control the state error and the adaptation error are globally exponentially stable or, equivalently, exponentially stable in the large. When the excitation condition, however, is imposed on the reference input or the reference model state, it is often incorrectly concluded that the persistent excitation in those signals also implies exponential stability in the large. The definition of persistent excitation is revisited so as to address some possible confusion in the adaptive control literature. It is then shown that persistent excitation of the reference model only implies local persistent excitation (weak persistent excitation). Weak persistent excitation of the regressor is still sufficient for uniform asymptotic stability in the large, but not exponential stability in the large. We show that there exists an infinite region in the state-space of adaptive systems where the state rate is bounded. This infinite region with finite rate of convergence is shown to exist not only in classic open-loop reference model adaptive systems but also in a new class of closed-loop reference model adaptive systems.

6.
Bioessays ; 39(2)2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28000336

RESUMO

The human gut microbiota is a very complex and dynamic ecosystem that plays a crucial role in health and well-being. Inferring microbial community structure and dynamics directly from time-resolved metagenomics data is key to understanding the community ecology and predicting its temporal behavior. Many methods have been proposed to perform the inference. Yet, as we point out in this review, there are several pitfalls along the way. Indeed, the uninformative temporal measurements and the compositional nature of the relative abundance data raise serious challenges in inference. Moreover, the inference results can be largely distorted when only focusing on highly abundant species by ignoring or grouping low-abundance species. Finally, the implicit assumptions in various regularization methods may not reflect reality. Those issues have to be seriously considered in ecological modeling of human gut microbiota.


Assuntos
Bactérias/genética , Biota , Microbioma Gastrointestinal/genética , Metagenômica/métodos , Modelos Biológicos , Humanos , Interações Microbianas
7.
Nature ; 534(7606): 259-62, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-27279224

RESUMO

Human-associated microbial communities have a crucial role in determining our health and well-being, and this has led to the continuing development of microbiome-based therapies such as faecal microbiota transplantation. These microbial communities are very complex, dynamic and highly personalized ecosystems, exhibiting a high degree of inter-individual variability in both species assemblages and abundance profiles. It is not known whether the underlying ecological dynamics of these communities, which can be parameterized by growth rates, and intra- and inter-species interactions in population dynamics models, are largely host-independent (that is, universal) or host-specific. If the inter-individual variability reflects host-specific dynamics due to differences in host lifestyle, physiology or genetics, then generic microbiome manipulations may have unintended consequences, rendering them ineffective or even detrimental. Alternatively, microbial ecosystems of different subjects may exhibit universal dynamics, with the inter-individual variability mainly originating from differences in the sets of colonizing species. Here we develop a new computational method to characterize human microbial dynamics. By applying this method to cross-sectional data from two large-scale metagenomic studies--the Human Microbiome Project and the Student Microbiome Project--we show that gut and mouth microbiomes display pronounced universal dynamics, whereas communities associated with certain skin sites are probably shaped by differences in the host environment. Notably, the universality of gut microbial dynamics is not observed in subjects with recurrent Clostridium difficile infection but is observed in the same set of subjects after faecal microbiota transplantation. These results fundamentally improve our understanding of the processes that shape human microbial ecosystems, and pave the way to designing general microbiome-based therapies.


Assuntos
Ecossistema , Microbiota/fisiologia , Clostridioides difficile/fisiologia , Infecções por Clostridium/microbiologia , Simulação por Computador , Estudos Transversais , Conjuntos de Dados como Assunto , Meio Ambiente , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiologia , Voluntários Saudáveis , Humanos , Intestinos/microbiologia , Metagenômica , Boca/microbiologia , Especificidade de Órgãos , Pele/microbiologia , Especificidade da Espécie
8.
Proc Natl Acad Sci U S A ; 113(18): 4976-81, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27091990

RESUMO

The protein-protein interaction (PPI) network is crucial for cellular information processing and decision-making. With suitable inputs, PPI networks drive the cells to diverse functional outcomes such as cell proliferation or cell death. Here, we characterize the structural controllability of a large directed human PPI network comprising 6,339 proteins and 34,813 interactions. This network allows us to classify proteins as "indispensable," "neutral," or "dispensable," which correlates to increasing, no effect, or decreasing the number of driver nodes in the network upon removal of that protein. We find that 21% of the proteins in the PPI network are indispensable. Interestingly, these indispensable proteins are the primary targets of disease-causing mutations, human viruses, and drugs, suggesting that altering a network's control property is critical for the transition between healthy and disease states. Furthermore, analyzing copy number alterations data from 1,547 cancer patients reveals that 56 genes that are frequently amplified or deleted in nine different cancers are indispensable. Among the 56 genes, 46 of them have not been previously associated with cancer. This suggests that controllability analysis is very useful in identifying novel disease genes and potential drug targets.


Assuntos
Predisposição Genética para Doença , Proteínas/metabolismo , Humanos , Mutação , Ligação Proteica
9.
PLoS Comput Biol ; 12(2): e1004688, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26866806

RESUMO

Microbiome-based stratification of healthy individuals into compositional categories, referred to as "enterotypes" or "community types", holds promise for drastically improving personalized medicine. Despite this potential, the existence of community types and the degree of their distinctness have been highly debated. Here we adopted a dynamic systems approach and found that heterogeneity in the interspecific interactions or the presence of strongly interacting species is sufficient to explain community types, independent of the topology of the underlying ecological network. By controlling the presence or absence of these strongly interacting species we can steer the microbial ecosystem to any desired community type. This open-loop control strategy still holds even when the community types are not distinct but appear as dense regions within a continuous gradient. This finding can be used to develop viable therapeutic strategies for shifting the microbial composition to a healthy configuration.


Assuntos
Microbiota , Modelos Biológicos , Algoritmos , Análise por Conglomerados , Biologia Computacional , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA