Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ultramicroscopy ; 159 Pt 2: 420-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25748692

RESUMO

Open-space nanomaterials are a widespread class of technologically important materials that are generally incompatible with analysis by atom probe tomography (APT) due to issues with specimen preparation, field evaporation and data reconstruction. The feasibility of encapsulating such non-compact matter in a matrix to enable APT measurements is investigated using nanoparticles as an example. Simulations of field evaporation of a void, and the resulting artifacts in ion trajectory, underpin the requirement that no voids remain after encapsulation. The approach is demonstrated by encapsulating Pt nanoparticles in an ZnO:Al matrix created by atomic layer deposition, a growth technique which offers very high surface coverage and conformality. APT measurements of the Pt nanoparticles are correlated with transmission electron microscopy images and numerical simulations in order to evaluate the accuracy of the APT reconstruction.

2.
Phys Rev Lett ; 97(7): 077201, 2006 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-17026268

RESUMO

We observe low-field hysteretic magnetoresistance in a (Ga,Mn)As single-electron transistor which can exceed 3 orders of magnitude. The sign and size of the magnetoresistance signal are controlled by the gate voltage. Experimental data are interpreted in terms of electrochemical shifts associated with magnetization rotations. This Coulomb blockade anisotropic magnetoresistance is distinct from previously observed anisotropic magnetoresistance effects as it occurs when the anisotropy in a band structure derived parameter is comparable to an independent scale, the single-electron charging energy. Effective kinetic-exchange model calculations in (Ga,Mn)As show chemical potential anisotropies consistent with experiment and ab initio calculations in transition metal systems suggest that this generic effect persists to high temperatures in metal ferromagnets with strong spin-orbit coupling.

3.
Phys Rev Lett ; 94(12): 127202, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15903954

RESUMO

We report a large tunneling anisotropic magnetoresistance (TAMR) in (Ga,Mn)As lateral nanoconstrictions. Unlike previously reported tunneling magnetoresistance effects in nanocontacts, the TAMR does not require noncollinear magnetization on either side of the constriction. The nature of the effect is established by a direct comparison of its phenomenology with that of normal anisotropic magnetoresistance (AMR) measured in the same lateral geometry. The direct link we establish between the TAMR and AMR indicates that TAMR may be observable in other materials showing room temperature AMR and demonstrates that the physics of nanoconstriction magnetoresistive devices can be much richer than previously thought.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA