Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 15(6): e0235568, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32598376

RESUMO

Filamentous fungi belonging to the genus Fusarium are notorious plant-pathogens that infect, damage and contaminate a wide variety of important crops. Phenamacril is the first member of a novel class of single-site acting cyanoacrylate fungicides which has proven highly effective against important members of the genus Fusarium. However, the recent emergence of field-resistant strains exhibiting qualitative resistance poses a major obstacle for the continued use of phenamacril. In this study, we synthesized novel cyanoacrylate compounds based on the phenamacril-scaffold to test their growth-inhibitory potential against wild-type Fusarium and phenamacril-resistant strains. Our findings show that most chemical modifications to the phenamacril-scaffold are associated with almost complete loss of fungicidal activity and in vitro inhibition of myosin motor domain ATPase activity.


Assuntos
Cianoacrilatos/farmacologia , Farmacorresistência Fúngica/efeitos dos fármacos , Fungicidas Industriais/farmacologia , Fusarium/crescimento & desenvolvimento , Fusarium/efeitos dos fármacos
2.
Toxins (Basel) ; 11(5)2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100892

RESUMO

Fungal non-ribosomal peptide synthetase (NRPS) clusters are spread across the chromosomes, where several modifying enzyme-encoding genes typically flank one NRPS. However, a recent study showed that the octapeptide fusaoctaxin A is tandemly synthesized by two NRPSs in Fusarium graminearum. Here, we illuminate parts of the biosynthetic route of fusaoctaxin A, which is cleaved into the tripeptide fusatrixin A and the pentapeptide fusapentaxin A during transport by a cluster-specific ABC transporter with peptidase activity. Further, we deleted the histone H3K27 methyltransferase kmt6, which induced the production of fusaoctaxin A.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Peptídeo Sintases/metabolismo , Peptídeos/metabolismo , Proteínas Fúngicas/genética , Fusarium/genética , Fusarium/crescimento & desenvolvimento , Histonas/metabolismo , Família Multigênica , Peptídeo Sintases/genética , Peptídeos/genética , Triticum/microbiologia
3.
Curr Genet ; 65(6): 1263-1280, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31139896

RESUMO

The eukaryotic ascomycete genus Fusarium comprises many species capable of producing secondary metabolites important for agriculture, health, and biotechnology. Filamentous fungi share common physiological features, but even within Fusarium, there are significant differences that affect the success of biotechnological methods used to unravel biosynthetic pathways. The aim of this review is to describe the different methods that have successfully been used throughout the genus Fusarium to identify the products of novel biosynthetic pathways. The results are presented in tables to give the reader an overview and thereby enable the selection of the most appropriate method to the problem, regarding both species and target products. Significant work has gone into characterization of the underlying molecular genetics of secondary metabolites, but still, the products of only 25-30% of predicted gene clusters have been identified. In this review, we highlight existing knowledge and encourage the development of new techniques and strategies to provide access to the many unknown polyketide and non-ribosomal peptide products that await discovery in Fusarium.


Assuntos
Fusarium/genética , Biossíntese de Peptídeos Independentes de Ácido Nucleico , Peptídeos/química , Policetídeos/química , Policetídeos/metabolismo , Vias Biossintéticas/genética , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Histonas/química , Peptídeo Sintases/genética , Peptídeos/metabolismo , Policetídeo Sintases/genética , Protoplastos , Transformação Genética
4.
J Biol Chem ; 294(4): 1328-1337, 2019 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-30504222

RESUMO

The cyanoacrylate compound phenamacril (also known as JS399-19) is a recently identified fungicide that exerts its antifungal effect on susceptible Fusarium species by inhibiting the ATPase activity of their myosin class I motor domains. Although much is known about the antifungal spectrum of phenamacril, the exact mechanism behind the phenamacril-mediated inhibition remains to be resolved. Here, we describe the characterization of the effect of phenamacril on purified myosin motor constructs from the model plant pathogen and phenamacril-susceptible species Fusarium graminearum, phenamacril-resistant Fusarium species, and the mycetozoan model organism Dictyostelium discoideum Our results show that phenamacril potently (IC50 ∼360 nm), reversibly, and noncompetitively inhibits ATP turnover, actin binding during ATP turnover, and motor activity of F. graminearum myosin-1. Phenamacril also inhibits the ATPase activity of Fusarium avenaceum myosin-1 but has little or no inhibitory effect on the motor activity of Fusarium solani myosin-1, human myosin-1c, and D. discoideum myosin isoforms 1B, 1E, and 2. Our findings indicate that phenamacril is a species-specific, noncompetitive inhibitor of class I myosin in susceptible Fusarium sp.


Assuntos
Fungicidas Industriais/farmacologia , Fusarium/efeitos dos fármacos , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Miosina Tipo I/antagonistas & inibidores , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Conformação Proteica , Especificidade da Espécie
5.
Fungal Biol ; 121(5): 515-527, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28390508

RESUMO

Putative proton coupled di-peptide transporters, PTR2s, are found in filamentous fungi in different numbers and their function during fungal development and plant infection is unresolved. In Fusarium graminearum, the cause of head blight in cereals, we identified four putative PTR2 transporters (FgPTR2A-D). The genes did not cluster together in phylogenetic analyses and only FgPTR2A and FgPTR2C were able to complement a PTR2 deficient yeast mutant in uptake of di-peptides. All FgPTR2s are continuously expressed throughout the fungal lifecycle, although at different levels. In silico analyses of existing expression-data show that FgPTR2B is found at higher levels than the others in planta and during sexual development. Deletion mutants of FgPTR2A, FgPTR2C, and FgPTR2D had a higher production of deoxynivalenol (DON) and zearalenone and lower production of fusarielin H than the wild type. Perithecium development was reduced in these mutants but unaffected by deletion of FgPTR2B. Conidia production was reduced in the FgPTR2B mutant and unaffected by deletion of the other PTR2 transporters. Sexual development and secondary metabolite production are known to be linked at the regulatory level and the results suggest that PTR2s are active in nitrogen turnover and thereby influence signal processes.


Assuntos
Fusarium/genética , Fusarium/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Recombinação Genética , Metabolismo Secundário , Dipeptídeos/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Esporos Fúngicos/crescimento & desenvolvimento , Tricotecenos/metabolismo , Zearalenona/metabolismo
6.
Molecules ; 21(12)2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27983606

RESUMO

Fusarielins are polyketides with a decalin core produced by various species of Aspergillus and Fusarium. Although the responsible gene cluster has been identified, the biosynthetic pathway remains to be elucidated. In the present study, members of the gene cluster were deleted individually in a Fusarium graminearum strain overexpressing the local transcription factor. The results suggest that a trans-acting enoyl reductase (FSL5) assists the polyketide synthase FSL1 in biosynthesis of a polyketide product, which is released by hydrolysis by a trans-acting thioesterase (FSL2). Deletion of the epimerase (FSL3) resulted in accumulation of an unstable compound, which could be the released product. A novel compound, named prefusarielin, accumulated in the deletion mutant of the cytochrome P450 monooxygenase FSL4. Unlike the known fusarielins from Fusarium, this compound does not contain oxygenized decalin rings, suggesting that FSL4 is responsible for the oxygenation.


Assuntos
Fusarium/genética , Família Multigênica , Policetídeos/metabolismo , Aspergillus/genética , Genes Fúngicos , Estrutura Molecular , Policetídeos/química
7.
Pestic Biochem Physiol ; 134: 24-30, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27914536

RESUMO

Real-time imaging was used to study the effects of a novel Fusarium-specific cyanoacrylate fungicide (JS399-19) on growth and morphology of four Fusarium sp. This fungicide targets the motor domain of type I myosin. Fusarium graminearum PH-1, Fusarium solani f. sp. pisi 77-13-4, Fusarium avenaceum IBT8464, and Fusarium avenaceum 05001, which has a K216Q amino-acid substitution at the resistance-implicated site in its myosin type I motor domain, were analyzed. Real-time imaging shows that JS399-19 inhibits fungal growth but not to the extent previously reported. The fungicide causes the hypha to become entangled and unable to extend vertically. This implies that type I myosin in Fusarium is essential for hyphal and mycelia propagation. The K216Q substitution correlates with reduced susceptibility in F. avenaceum.


Assuntos
Aminoácidos/farmacologia , Fungicidas Industriais/farmacologia , Fusarium/efeitos dos fármacos , Fenilpropionatos/farmacologia , Sequência de Aminoácidos , Farmacorresistência Fúngica/genética , Proteínas Fúngicas/química , Fusarium/citologia , Fusarium/genética , Fusarium/crescimento & desenvolvimento , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Microscopia , Miosina Tipo I/química
8.
Toxins (Basel) ; 8(12)2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27916854

RESUMO

Bio-guided screening is an important method to identify bioactive compounds from fungi. In this study we applied a fast digital time-lapse microscopic method for assessment of the antibacterial properties of secondary metabolites from the fungal genus Fusarium. Here antibacterial effects could be detected for antibiotic Y, aurofusarin, beauvericin, enniatins and fusaric acid after six hours of cultivation. The system was then used in a bio-guided screen of extracts from 14 different Fusarium species, which had been fractionated by HPLC. In this screen, fractions containing the red pigments aurofusarin and bikaverin showed effects against strains of Lactobacillus and Bifidobacterium. The IC50 for aurofusarin against Lactobacillus acidophilus was 8 µM, and against Bifidobacterium breve it was 64 µM. Aurofusarin only showed an effect on probiotic bacteria, leading to the speculation that only health-promoting bacteria with a positive effect in the gut system are affected.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Fusarium/metabolismo , Antibacterianos/biossíntese , Bactérias/crescimento & desenvolvimento , Depsipeptídeos/farmacologia , Ácido Fusárico/farmacologia , Micotoxinas/farmacologia , Naftoquinonas/farmacologia
9.
Sci Rep ; 6: 26206, 2016 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-27193384

RESUMO

Biosynthesis of the black perithecial pigment in the filamentous fungus Fusarium graminearum is dependent on the polyketide synthase PGL1 (oPKS3). A seven-membered PGL1 gene cluster was identified by over-expression of the cluster specific transcription factor pglR. Targeted gene replacement showed that PGL1, pglJ, pglM and pglV were essential for the production of the perithecial pigment. Over-expression of PGL1 resulted in the production of 6-O-demethyl-5-deoxybostrycoidin (1), 5-deoxybostrycoidin (2), and three novel compounds 5-deoxybostrycoidin anthrone (3), 6-O-demethyl-5-deoxybostrycoidin anthrone (4) and purpurfusarin (5). The novel dimeric bostrycoidin purpurfusarin (5) was found to inhibit the growth of Candida albicans with an IC50 of 8.0 +/- 1.9 µM. The results show that Fusarium species with black perithecia have a previously undescribed form of 5-deoxybostrycoidin based melanin in their fruiting bodies.


Assuntos
Fusarium/metabolismo , Melaninas/biossíntese , Pigmentação , Antifúngicos/metabolismo , Vias Biossintéticas/genética , Candida albicans/efeitos dos fármacos , Candida albicans/crescimento & desenvolvimento , Fusarium/genética , Expressão Gênica , Técnicas de Inativação de Genes , Genes Fúngicos , Concentração Inibidora 50 , Isoquinolinas/metabolismo , Família Multigênica
10.
Curr Genet ; 62(4): 799-807, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26936154

RESUMO

Sansalvamide is a cyclic pentadepsipeptide produced by Fusarium solani and has shown promising results as potential anti-cancer drug. The biosynthetic pathway has until now remained unidentified, but here we used an Agrobacterium tumefaciens-mediated transformation (ATMT) approach to generate knockout mutants of two candidate non-ribosomal peptide synthetases (NRPS29 and NRPS30). Comparative studies of secondary metabolites in the two deletion mutants and wild type confirmed the absence of sansalvamide in the NRPS30 deletion mutant, implicating this synthetase in the biosynthetic pathway for sansalvamide. Sansalvamide is structurally related to the cyclic hexadepsipeptide destruxin, which both contain an α-hydroxyisocaproic acid (HICA) unit. A gene cluster responsible for destruxin production has previously been identified in Metarhizium robertsii together with a hypothetical biosynthetic pathway. Using comparative bioinformatic analyses of the catalytic domains in the destruxin and sansalvamide NRPSs, we were able to propose a model for sansalvamide biosynthesis. Orthologues of the gene clusters were also identified in species from several other genera including Acremonium chrysogenum and Trichoderma virens, which suggests that the ability to produce compounds related to destruxin and sansalvamide is widespread.


Assuntos
Depsipeptídeos/biossíntese , Depsipeptídeos/farmacologia , Fusarium/genética , Fusarium/metabolismo , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Antineoplásicos , Depsipeptídeos/química , Regulação Fúngica da Expressão Gênica , Genoma Fúngico , Metaboloma , Metabolômica , Modelos Biológicos , Família Multigênica , Filogenia , Metabolismo Secundário , Deleção de Sequência , Transcrição Gênica
11.
Fungal Biol ; 119(7): 551-9, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26058531

RESUMO

The obligate ascomycete parasitic fungus Blumeria graminis f. sp. hordei (Bgh) has a unique lifestyle as it is completely dependent on living barley leaves as substrate for growth. Genes involved in inorganic nitrogen utilization are notably lacking, and the fungus relies on uptake of host-derived peptides and amino acids. The PTR2 transporter family takes up di- and tri- peptides in a proton coupled process and filamentous fungi typically have two or more di/tri peptide transporters. Here we show that Bgh appear to have one PTR2 that can restore dipeptide uptake in a Saccharomyces cerevisiae PTR2 deletion strain. The Bgh PTR2 gene is expressed in conidia and germinating conidia. During Bgh infection of barley the expression level of the BghPTR2 gene is high in the appressorial germ tube, low in the haustoria and high again during conidiation and secondary infection in the compatible and intermediate resistant interactions. BghPTR2 appears to be important for the initial establishment of fungal infection but not for uptake of di-tri-peptides at the haustorial interface. Based on the expression profile we suggest that BghPTR2 is active in internal transport of nutrient reserves and/or uptake of break down products from the plant surface during the early infection stages.


Assuntos
Ascomicetos/metabolismo , Dipeptídeos/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Ascomicetos/classificação , Ascomicetos/genética , Proteínas Fúngicas/genética , Hordeum/microbiologia , Proteínas de Membrana Transportadoras/genética , Filogenia , Doenças das Plantas/microbiologia , Esporos Fúngicos/genética , Esporos Fúngicos/metabolismo
12.
Fungal Genet Biol ; 75: 20-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25543026

RESUMO

Members of the genus Fusarium produce a plethora of bioactive secondary metabolites, which can be harmful to humans and animals or have potential in drug development. In this study we have performed comparative analyses of polyketide synthases (PKSs) and non-ribosomal peptide synthetases (NRPSs) from ten different Fusarium species including F. graminearum (two strains), F. verticillioides, F. solani, F. culmorum, F. pseudograminearum, F. fujikuroi, F. acuminatum, F. avenaceum, F. equiseti, and F. oxysporum (12 strains). This led to identification of 52 NRPS and 52 PKSs orthology groups, respectively, and although not all PKSs and NRPSs are assumed to be intact or functional, the analyses illustrate the huge secondary metabolite potential in Fusarium. In our analyses we identified a core collection of eight NRPSs (NRPS2-4, 6, 10-13) and two PKSs (PKS3 and PKS7) that are conserved in all strains analyzed in this study. The identified PKSs and NRPSs were named based on a previously developed classification system (www.FusariumNRPSPKS.dk). We suggest this system be used when PKSs and NRPSs have to be classified in future sequenced Fusarium strains. This system will facilitate identification of orthologous and non-orthologous NRPSs and PKSs from newly sequenced Fusarium genomes and will aid the scientific community by providing a common nomenclature for these two groups of genes/enzymes.


Assuntos
Fusarium/genética , Peptídeo Sintases/classificação , Peptídeo Sintases/genética , Policetídeo Sintases/classificação , Policetídeo Sintases/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Fusarium/química , Fusarium/classificação , Fusarium/enzimologia , Genes Fúngicos , Filogenia , Terminologia como Assunto
13.
J Nat Prod ; 77(12): 2619-25, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25412204

RESUMO

The closely related species Fusarium graminearum and Fusarium pseudograminearum differ in that each contains a gene cluster with a polyketide synthase (PKS) and a nonribosomal peptide synthetase (NRPS) that is not present in the other species. To identify their products, we deleted PKS6 and NRPS7 in F. graminearum and NRPS32 in F. pseudograminearum. By comparing the secondary metabolite profiles of the strains we identified the resulting product in F. graminearum as fusaristatin A, and as W493 A and B in F. pseudograminearum. These lipopeptides have previously been isolated from unidentified Fusarium species. On the basis of genes in the putative gene clusters we propose a model for biosynthesis where the polyketide product is shuttled to the NPRS via a CoA ligase and a thioesterase in F. pseudograminearum. In F. graminearum the polyketide is proposed to be directly assimilated by the NRPS.


Assuntos
Depsipeptídeos/isolamento & purificação , Fusarium/metabolismo , Lipopeptídeos/isolamento & purificação , Família Multigênica , Peptídeos Cíclicos/isolamento & purificação , Policetídeo Sintases/metabolismo , Depsipeptídeos/química , Fusarium/genética , Lipopeptídeos/química , Estrutura Molecular , Peptídeo Sintases/metabolismo , Peptídeos Cíclicos/química
14.
Fungal Genet Biol ; 70: 24-31, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25011010

RESUMO

The available genome sequences show that the number of secondary metabolite genes in filamentous fungi vastly exceeds the number of known products. This is also true for the global plant pathogenic fungus Fusarium graminearum, which contains 15 polyketide synthase (PKS) genes, of which only 6 have been linked to products. To help remedy this, we focused on PKS14, which has only been shown to be expressed during plant infections or when cultivated on rice or corn meal (RM) based media. To enhance the production of the resulting product we introduced a constitutive promoter in front of PKS14 and cultivated two of the resulting mutants on RM medium. This led to the production of two compounds, which were only detected in the PKS14 overexpressing mutants and not in the wild type or PKS14 deletion mutants. The two compounds were tentatively identified as orsellinic acid and orcinol by comparing spectroscopic data (mass spectroscopy and chromatography) to authentic standards. NMR analysis of putative orcinol isolated from the PKS14 overexpressing mutant supported our identification. Orcinol and orsellinic acid, not previously detected in Fusarium, have primarily been detected in lichen fungi. Orsellinic acid is hypothesized to be the PKS release product which is transformed to orcinol through decarboxylation. Phylogenetic analyses of PKSs placed PKS14 in a subclade of known OA synthases. Expression analysis by microarray of 55 experiments identified seven genes near PKS14 that were expressed in a similar manner. One of the seven genes encodes a predicted carboxylase, which could be responsible for transforming orsellinic acid to orcinol.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Policetídeo Sintases/metabolismo , Resorcinóis/metabolismo , Descarboxilação , Proteínas Fúngicas/genética , Fusarium/genética , Família Multigênica , Mutação , Filogenia , Policetídeo Sintases/genética
15.
Fungal Biol ; 117(11-12): 814-21, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24295920

RESUMO

Growth conditions are known to affect the production of secondary metabolites in filamentous fungi. The influence of different nitrogen sources and the transcription factor AreA on the production of mycotoxins in Fusarium graminearum was examined. Growth on glutamine or NH4-sources was poor and asparagine was found to be a preferential nitrogen source for F. graminearum. Deletion of areA led to poor growth on NaNO3 suggesting its involvement in regulation of the nitrate reduction process. In addition utilization of aspartic acid, histidine, isoleucine, leucine, threonine, tyrosine, and valine as nitrogen sources was shown to depend of a functional AreA. AreA was shown to be required for the production of the mycotoxins deoxynivalenol (DON), zearalenone, and fusarielin H regardless of the nutrient medium. Deletion of nmr, the repressor of AreA under nitrogen sufficient conditions, had little effect on either growth or toxin production. AreA appears to regulate production of some mycotoxins directly or indirectly independent on nitrogen status and plays a role in utilization of certain amino acids.


Assuntos
Proteínas Fúngicas/metabolismo , Fusarium/metabolismo , Regulação Fúngica da Expressão Gênica , Nitrogênio/metabolismo , Metabolismo Secundário , Fatores de Transcrição/metabolismo , Compostos de Amônio/metabolismo , Asparagina/metabolismo , Proteínas Fúngicas/genética , Fusarium/genética , Deleção de Genes , Glutamina/metabolismo , Micotoxinas/metabolismo , Fatores de Transcrição/genética
16.
Toxins (Basel) ; 5(9): 1655-63, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-24064720

RESUMO

Fusarium avenaceum is a widespread pathogen of important crops in the temperate climate zones that can produce many bioactive secondary metabolites, including moniliformin, fusarin C, antibiotic Y, 2-amino-14,16-dimethyloctadecan-3-ol (2-AOD-3-ol), chlamydosporol, aurofusarin and enniatins. Here, we examine the production of these secondary metabolites in response to cultivation on different carbon sources in order to gain insight into the regulation and production of secondary metabolites in F. avenaceum. Seven monosaccharides (arabinose, xylose, fructose, sorbose, galactose, mannose, glucose), five disaccharides (cellobiose, lactose, maltose, sucrose and trehalose) and three polysaccharides (dextrin, inulin and xylan) were used as substrates. Three F. avenaceum strains were used in the experiments. These were all able to grow and produce aurofusarin on the tested carbon sources. Moniliformin and enniatins were produced on all carbon types, except on lactose, which suggest a common conserved regulation mechanism. Differences in the strains was observed for production of fusarin C, 2-AOD-3-ol, chlamydosporol and antibiotic Y, which suggests that carbon source plays a role in the regulation of their biosynthesis.


Assuntos
Carboidratos/farmacologia , Fusarium/efeitos dos fármacos , Micotoxinas/metabolismo , Metabolismo Secundário/efeitos dos fármacos , Ciclobutanos/metabolismo , Depsipeptídeos/metabolismo , Ergosterol/metabolismo , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Naftoquinonas/metabolismo , Polienos/metabolismo , Pironas/metabolismo , Esfingolipídeos/metabolismo
17.
J Microbiol Methods ; 94(3): 343-6, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23871859

RESUMO

Production of bioactive compounds and enzymes from filamentous fungi is highly dependent on cultivation conditions. Here we present an easy way to cultivate filamentous fungi on glass beads that allow complete control of nutrient supply. Secondary metabolite production in Fusarium graminearum and Fusarium solani cultivated on agar plates, in shaking liquid culture or on glass beads was compared. Agar plate culture and glass bead cultivation yielded comparable results while liquid culture had lower production of secondary metabolites. RNA extraction from glass beads and liquid cultures was easier than from agar plates and the quality was superior. The system allows simple control of nutrient availability throughout fungal cultivation. This combined with the ease of extraction of nucleic acids and metabolites makes the system highly suitable for the study of gene regulation in response to specific nutrient factors.


Assuntos
Técnicas de Cultura de Células/métodos , Meios de Cultura/metabolismo , Fusarium , Micélio , Micologia/métodos , Ágar/metabolismo , Biotecnologia , Meios de Cultura/química , DNA Fúngico/análise , DNA Fúngico/metabolismo , Fusarium/metabolismo , Fusarium/fisiologia , Micélio/metabolismo , Micélio/fisiologia , Nucleotídeos/metabolismo , Fenótipo , RNA Fúngico/análise , RNA Fúngico/metabolismo
18.
Int J Food Microbiol ; 160(3): 206-11, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23290226

RESUMO

Fusarielins constitute a relative unexplored group of secondary metabolites, which have been isolated mainly from unidentified Aspergillus and Fusarium strains. In the present study we show that the ability to produce fusarielins is restricted to a few Fusarium species. Among the 15 analyzed species fusarielins were identified only in extracts from Fusarium graminearum and Fusarium tricinctum. The influence of different carbon sources on fusarielin biosynthesis was examined and the results showed that disaccharides and dextrin in combination with arginine as sole nitrogen source increased fusarielin production. When arginine was replaced with nitrate the fusarielins were produced on a wider selection of carbon sources including all monosaccharides. Production of fusarielins in F. graminearum was also influenced by pH, cultivation time, temperature and fructose concentration with the optimal conditions being: pH6, 25°C, 26days and 60mg fructose/mL. Wheat spikes were inoculated with F. graminearum to determine whether fusarielins are produced in infected cereals and fusarielin H was detected in all samples ranging from 392 to 1865ng/g (mean: 989ng/g) indicating that fusarielins are produced during infection. The study shows that even though fusarielins are produced by a narrow list of Fusarium species, they potentially can be present in infected cereals.


Assuntos
Fusarium/metabolismo , Naftalenos/metabolismo , Metabolismo dos Carboidratos , Compostos de Epóxi/análise , Compostos de Epóxi/química , Compostos de Epóxi/metabolismo , Concentração de Íons de Hidrogênio , Naftalenos/análise , Naftalenos/química , Temperatura , Fatores de Tempo , Triticum/microbiologia
19.
Toxicol Lett ; 214(3): 259-62, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22982765

RESUMO

The fusarielins are a group of metabolites found in several Aspergillus and Fusarium species that have been reported to have with weak antifungal, antibiotic and cytotoxic effects. This study identifies fusarielin A, F, G and H isolated from Fusarium as mycoestrogens. Mycoestrogens are compounds from fungi that bind to the estrogen receptors and induce an estrogenic response in targeted cells. All four tested fusarielins stimulate MCF-7 cell proliferation with fusarielin H as the most potent, able to stimulate cell proliferation 4-fold in a resazurin metabolism assay at 25µM. MDA-MB-231 cells without the estrogen receptor-α and MCF-10a cells without estrogen receptors were not stimulated by fusarielins. Furthermore, the stimulation was prevented in MCF-7 cells when fusarielins were incubated in the presence of the estrogen receptor antagonist fulvestrant. These observations suggest that fusarielins bind to the estrogen receptor and act as weak mycoestrogens.


Assuntos
Adenocarcinoma/tratamento farmacológico , Anticarcinógenos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Compostos de Epóxi/farmacologia , Estrogênios não Esteroides/farmacologia , Proteínas Fúngicas/farmacologia , Fusarium/química , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Anticarcinógenos/antagonistas & inibidores , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Compostos de Epóxi/antagonistas & inibidores , Estradiol/análogos & derivados , Estradiol/farmacologia , Antagonistas de Estrogênios/farmacologia , Estrogênios não Esteroides/antagonistas & inibidores , Feminino , Fulvestranto , Humanos , Indicadores e Reagentes/farmacologia , Células MCF-7 , Oxazinas/farmacologia , Extratos Vegetais/antagonistas & inibidores , Extratos Vegetais/farmacologia , Receptores de Estrogênio/antagonistas & inibidores , Receptores de Estrogênio/deficiência , Receptores de Estrogênio/metabolismo , Xantenos/farmacologia
20.
Fungal Biol ; 116(8): 855-62, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22862913

RESUMO

The plant pathogen Fusarium graminearum is the infamous cause of Fusarium head blight worldwide resulting in significant losses of yield and reduced grain feed quality. It also has the potential to produce a range of small bioactive peptides produced by the non ribosomal peptide synthetases (NRPSs). Most of these are unknown as F. graminearum contains 19 NRPS encoding genes, but only three have been assigned products. For the first time, we use deletion and overexpression mutants to investigate the functions and product of NRPS4 in F. graminearum. Deletion of NRPS4 homologues in Alternaria brassicicola and Cochloibolus heterostrophus has been shown to result in mutants unable to repel water. In a time study of surface hydrophobicity we observed that water droplets could penetrate 7 d old colonies of the NRPS4 deletion mutants. Loss in ability to repel water was first observed on 13 d old cultures of the wild type strain, whereas the overexpression strain remained water repellant throughout the 38 d time study. The conidia of both mutants were examined and those of the overexpression mutant showed distinct morphological differences in form of collapsed cells. These observations might suggest that the peptide product of NRPS4 could be an architectural factor in the cell walls of Fusarium or an indirect regulator of hydrophobicity.


Assuntos
Proteínas Fúngicas/genética , Fusarium/química , Fusarium/enzimologia , Expressão Gênica , Peptídeo Sintases/genética , Parede Celular/química , Parede Celular/enzimologia , Parede Celular/genética , Proteínas Fúngicas/metabolismo , Fusarium/genética , Fusarium/crescimento & desenvolvimento , Interações Hidrofóbicas e Hidrofílicas , Peptídeo Sintases/metabolismo , Peptídeos/metabolismo , Doenças das Plantas/microbiologia , Deleção de Sequência , Esporos Fúngicos/química , Esporos Fúngicos/enzimologia , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA