Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 202(8): 1088-1104, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32628504

RESUMO

Rationale: Promoting endogenous pulmonary regeneration is crucial after damage to restore normal lungs and prevent the onset of chronic adult lung diseases.Objectives: To investigate whether the cell-cycle inhibitor p16INK4a limits lung regeneration after newborn bronchopulmonary dysplasia (BPD), a condition characterized by the arrest of alveolar development, leading to adult sequelae.Methods: We exposed p16INK4a-/- and p16INK4aATTAC (apoptosis through targeted activation of caspase 8) transgenic mice to postnatal hyperoxia, followed by pneumonectomy of the p16INK4a-/- mice. We measured p16INK4a in blood mononuclear cells of preterm newborns, 7- to 15-year-old survivors of BPD, and the lungs of patients with BPD.Measurements and Main Results: p16INK4a concentrations increased in lung fibroblasts after hyperoxia-induced BPD in mice and persisted into adulthood. p16INK4a deficiency did not protect against hyperoxic lesions in newborn pups but promoted restoration of the lung architecture by adulthood. Curative clearance of p16INK4a-positive cells once hyperoxic lung lesions were established restored normal lungs by adulthood. p16INK4a deficiency increased neutral lipid synthesis and promoted lipofibroblast and alveolar type 2 (AT2) cell development within the stem-cell niche. Besides, lipofibroblasts support self-renewal of AT2 cells into alveolospheres. Induction with a PPARγ (peroxisome proliferator-activated receptor γ) agonist after hyperoxia also increased lipofibroblast and AT2 cell numbers and restored alveolar architecture in hyperoxia-exposed mice. After pneumonectomy, p16INK4a deficiency again led to an increase in lipofibroblast and AT2 cell numbers in the contralateral lung. Finally, we observed p16INK4a mRNA overexpression in the blood and lungs of preterm newborns, which persisted in the blood of older survivors of BPD.Conclusions: These data demonstrate the potential of targeting p16INK4a and promoting lipofibroblast development to stimulate alveolar regeneration from childhood to adulthood.


Assuntos
Displasia Broncopulmonar/patologia , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Fibroblastos/metabolismo , Pulmão/fisiologia , Regeneração/fisiologia , Adolescente , Adulto , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/patologia , Animais , Animais Recém-Nascidos , Apoptose , Displasia Broncopulmonar/metabolismo , Células Cultivadas , Criança , Modelos Animais de Doenças , Fibroblastos/patologia , Humanos , Hiperóxia/complicações , Hiperóxia/metabolismo , Hiperóxia/patologia , Recém-Nascido , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Alvéolos Pulmonares/patologia , Distribuição Aleatória , Estudos de Amostragem , Adulto Jovem
2.
Structure ; 27(4): 579-589.e5, 2019 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-30744994

RESUMO

Despite sharing common features, previous studies have shown that gyrases from different species have been modified throughout evolution to modulate their properties. Here, we report two crystal structures of Mycobacterium tuberculosis DNA gyrase, an apo and AMPPNP-bound form at 2.6-Å and 3.3-Å resolution, respectively. These structures provide high-resolution structural data on the quaternary organization and interdomain connections of a gyrase (full-length GyrB-GyrA57)2 thus providing crucial inputs on this essential drug target. Together with small-angle X-ray scattering studies, they revealed an "extremely open" N-gate state, which persists even in the DNA-free gyrase-AMPPNP complex and an unexpected connection between the ATPase and cleavage core domains mediated by two Corynebacteriales-specific motifs, respectively the C-loop and DEEE-loop. We show that the C-loop participates in the stabilization of this open conformation, explaining why this gyrase has a lower ATPase activity. Our results image a conformational state which might be targeted for drug discovery.


Assuntos
Adenosina Trifosfatases/genética , Trifosfato de Adenosina/química , Apoproteínas/química , Corynebacterium/química , DNA Girase/química , Mycobacterium tuberculosis/química , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Sequência de Aminoácidos , Apoproteínas/genética , Apoproteínas/metabolismo , Sítios de Ligação , Clonagem Molecular , Corynebacterium/enzimologia , Cristalografia por Raios X , DNA/química , DNA/metabolismo , DNA Girase/genética , DNA Girase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Cinética , Modelos Moleculares , Mycobacterium tuberculosis/enzimologia , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA