Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Brain Inform ; 11(1): 4, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38286886

RESUMO

The basal ganglia (BG) is part of a basic feedback circuit regulating cortical function, such as voluntary movements control, via their influence on thalamocortical projections. BG disorders, namely Parkinson's disease (PD), characterized by the loss of neurons in the substantia nigra, involve the progressive loss of motor functions. At the present, PD is incurable. Converging evidences suggest the onset of PD-specific pathology prior to the appearance of classical motor signs. This latent phase of neurodegeneration in PD is of particular relevance in developing more effective therapies by intervening at the earliest stages of the disease. Therefore, a key challenge in PD research is to identify and validate markers for the preclinical and prodromal stages of the illness. We propose a mechanistic neurocomputational model of the BG at a mesoscopic scale to investigate the behavior of the simulated neural system after several degrees of lesion of the substantia nigra, with the aim of possibly evaluating which is the smallest lesion compromising motor learning. In other words, we developed a working framework for the analysis of theoretical early-stage PD. While simulations in healthy conditions confirm the key role of dopamine in learning, in pathological conditions the network predicts that there may exist abnormalities of the motor learning process, for physiological alterations in the BG, that do not yet involve the presence of symptoms typical of the clinical diagnosis.

2.
J Clin Med ; 12(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37834834

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique also used as a non-pharmacological intervention against cognitive impairment. The purpose of the present review was to summarize what is currently known about the effectiveness of rTMS intervention on different cognitive domains in patients with mild cognitive impairment (MCI) and to address potential neuromodulation approaches in combination with electroencephalography (EEG) and neuroimaging, especially functional magnetic resonance imaging (fMRI). In this systematic review, we consulted three main databases (PubMed, Science Direct, and Scopus), and Google Scholar was selected for the gray literature search. The PRISMA flowchart drove the studies' inclusion. The selection process ensured that only high-quality studies were included; after removing duplicate papers, explicit ratings were given based on the quality classification as high (A), moderate (B), or low (C), considering factors such as risks of bias, inaccuracies, inconsistencies, lack of direction, and publication bias. Seven full-text articles fulfilled the stated inclusion, reporting five double-blind, randomized, sham-controlled studies, a case study, and a randomized crossover trial. The results of the reviewed studies suggested that rTMS in MCI patients is safe and effective for enhancing cognitive functions, thus making it a potential therapeutic approach for MCI patients. Changes in functional connectivity within the default mode network (DMN) after targeted rTMS could represent a valuable indicator of treatment response. Finally, high-frequency rTMS over the dorsolateral prefrontal cortex (DLPFC) has been shown to significantly enhance cognitive functions, such as executive performance, together with the increase of functional connectivity within frontoparietal networks. The main limitations were the number of included studies and the exclusion of studies using intermittent theta-burst stimulation, used in studies on Alzheimer's disease. Therefore, neuroimaging techniques in combination with rTMS have been shown to be useful for future network-based, fMRI-guided therapeutic approaches.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA