Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 364: 246-260, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37879441

RESUMO

Sustained drug-release systems prolong the retention of therapeutic drugs within target tissues to alleviate the need for repeated drug administration. Two major caveats of the current systems are that the release rate and the timing cannot be predicted or fine-tuned because they rely on uncontrolled environmental conditions and that the system must be redesigned for each drug and treatment regime because the drug is bound via interactions that are specific to its structure and composition. We present a controlled and universal sustained drug-release system, which comprises minute spherical particles in which a therapeutic protein is affinity-bound to alginate sulfate (AlgS) through one or more short heparin-binding peptide (HBP) sequence repeats. Employing post-myocardial infarction (MI) heart remodeling as a case study, we show that the release of C9-a matrix metalloproteinase-9 (MMP-9) inhibitor protein that we easily bound to AlgS by adding one, two, or three HBP repeats to its sequence-can be directly controlled by modifying the number of HBP repeats. In an in vivo study, we directly injected AlgS particles, which were bound to C9 through three HBP repeats, into the left ventricular myocardium of mice following MI. We found that the particles substantially reduced post-MI remodeling, attesting to the sustained, local release of the drug within the tissue. As the number of HBP repeats controls the rate of drug release from the AlgS particles, and since C9 can be easily replaced with almost any protein, our tunable sustained-release system can readily accommodate a wide range of protein-based treatments.


Assuntos
Metaloproteinase 9 da Matriz , Infarto do Miocárdio , Camundongos , Animais , Metaloproteinase 9 da Matriz/metabolismo , Preparações de Ação Retardada/uso terapêutico , Remodelação Ventricular , Função Ventricular Esquerda/fisiologia , Infarto do Miocárdio/terapia , Miocárdio/metabolismo
2.
Sci Rep ; 12(1): 21863, 2022 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-36529756

RESUMO

After myocardial infarction (MI), the heart's reparative response to the ischemic insult and the related loss of cardiomyocytes involves cardiac fibrosis, in which the damaged tissue is replaced with a fibrous scar. Although the scar is essential to prevent ventricular wall rupture in the infarction zone, it expands over time to remote, non-infarct areas, significantly increasing the extent of fibrosis and markedly altering cardiac structure. Cardiac function in this scenario deteriorates, thereby increasing the probability of heart failure and the risk of death. Recent works have suggested that the matricellular protein periostin, known to be involved in fibrosis, is a candidate therapeutic target for the regulation of MI-induced fibrosis and remodeling. Different strategies for the genetic manipulation of periostin have been proposed previously, yet those works did not properly address the time dependency between periostin activity and cardiac fibrosis. Our study aimed to fill that gap in knowledge and fully elucidate the explicit timing of cellular periostin upregulation in the infarcted heart to enable the safer and more effective post-MI targeting of periostin-producing cells. Surgical MI was performed in C57BL/6J and BALB/c mice by ligation of the left anterior descending coronary artery. Flow cytometry analyses of cells derived from the infarcted hearts and quantitative real-time PCR of the total cellular RNA revealed that periostin expression increased during days 2-7 and peaked on day 7 post-infarct, regardless of mouse strain. The established timeline for cellular periostin expression in the post-MI heart is a significant milestone toward the development of optimal periostin-targeted gene therapy.


Assuntos
Cicatriz , Infarto do Miocárdio , Animais , Camundongos , Cicatriz/patologia , Modelos Animais de Doenças , Fibrose , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Regulação para Cima , Remodelação Ventricular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA