Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Sci Signal ; 17(822): eabq1007, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38320000

RESUMO

Mitochondrial dynamics and trafficking are essential to provide the energy required for neurotransmission and neural activity. We investigated how G protein-coupled receptors (GPCRs) and G proteins control mitochondrial dynamics and trafficking. The activation of Gαq inhibited mitochondrial trafficking in neurons through a mechanism that was independent of the canonical downstream PLCß pathway. Mitoproteome analysis revealed that Gαq interacted with the Eutherian-specific mitochondrial protein armadillo repeat-containing X-linked protein 3 (Alex3) and the Miro1/Trak2 complex, which acts as an adaptor for motor proteins involved in mitochondrial trafficking along dendrites and axons. By generating a CNS-specific Alex3 knockout mouse line, we demonstrated that Alex3 was required for the effects of Gαq on mitochondrial trafficking and dendritic growth in neurons. Alex3-deficient mice had altered amounts of ER stress response proteins, increased neuronal death, motor neuron loss, and severe motor deficits. These data revealed a mammalian-specific Alex3/Gαq mitochondrial complex, which enables control of mitochondrial trafficking and neuronal death by GPCRs.


Assuntos
Axônios , Neurônios , Animais , Camundongos , Axônios/metabolismo , Mamíferos/metabolismo , Proteínas Mitocondriais/metabolismo , Neurônios/metabolismo
2.
Nat Commun ; 12(1): 3400, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099648

RESUMO

Increased cerebrospinal fluid neurofilament light (NfL) is a recognized biomarker for neurodegeneration that can also be assessed in blood. Here, we investigate plasma NfL as a marker of neurodegeneration in 13 neurodegenerative disorders, Down syndrome, depression and cognitively unimpaired controls from two multicenter cohorts: King's College London (n = 805) and the Swedish BioFINDER study (n = 1,464). Plasma NfL was significantly increased in all cortical neurodegenerative disorders, amyotrophic lateral sclerosis and atypical parkinsonian disorders. We demonstrate that plasma NfL is clinically useful in identifying atypical parkinsonian disorders in patients with parkinsonism, dementia in individuals with Down syndrome, dementia among psychiatric disorders, and frontotemporal dementia in patients with cognitive impairment. Data-driven cut-offs highlighted the fundamental importance of age-related clinical cut-offs for disorders with a younger age of onset. Finally, plasma NfL performs best when applied to indicate no underlying neurodegeneration, with low false positives, in all age-related cut-offs.


Assuntos
Disfunção Cognitiva/diagnóstico , Depressão/diagnóstico , Síndrome de Down/diagnóstico , Doenças Neurodegenerativas/diagnóstico , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Fatores Etários , Idoso , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/líquido cefalorraquidiano , Estudos de Coortes , Depressão/líquido cefalorraquidiano , Síndrome de Down/líquido cefalorraquidiano , Reações Falso-Positivas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Neurodegenerativas/líquido cefalorraquidiano , Valor Preditivo dos Testes , Valores de Referência , Fatores Sexuais
3.
PLoS One ; 16(2): e0246930, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33592009

RESUMO

Corticosteroid-binding globulin (CBG) is the specific carrier of circulating glucocorticoids, but evidence suggests that it also plays an active role in modulating tissue glucocorticoid activity. CBG polymorphisms affecting its expression or affinity for glucocorticoids are associated with chronic pain, chronic fatigue, headaches, depression, hypotension, and obesity with an altered hypothalamic pituitary adrenal axis. CBG has been localized in hippocampus of humans and rodents, a brain area where glucocorticoids have an important regulatory role. However, the specific CBG function in the hippocampus is yet to be established. The aim of this study was to investigate the effect of the absence of CBG on hippocampal glucocorticoid levels and determine whether pathways regulated by glucocorticoids would be altered. We used cbg-/- mice, which display low total-corticosterone and high free-corticosterone blood levels at the nadir of corticosterone secretion (morning) and at rest to evaluate the hippocampus for total- and free-corticosterone levels; 11ß-hydroxysteroid dehydrogenase expression and activity; the expression of key proteins involved in glucocorticoid activity and insulin signaling; microtubule-associated protein tau phosphorylation, and neuronal and synaptic function markers. Our results revealed that at the nadir of corticosterone secretion in the resting state the cbg-/- mouse hippocampus exhibited slightly elevated levels of free-corticosterone, diminished FK506 binding protein 5 expression, increased corticosterone downstream effectors and altered MAPK and PI3K pathway with increased pY216-GSK3ß and phosphorylated tau. Taken together, these results indicate that CBG deficiency triggers metabolic imbalance which could lead to damage and long-term neurological pathologies.


Assuntos
Fadiga/metabolismo , Doenças Genéticas Inatas/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/metabolismo , Transcortina/deficiência , Animais , Corticosterona/sangue , Camundongos , Fosforilação , Estresse Psicológico/sangue , Estresse Psicológico/metabolismo , Transcortina/metabolismo
4.
Neural Regen Res ; 14(2): 193-196, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30530996

RESUMO

Amyotrophic lateral sclerosis, the most common neurodegenerative disease affecting motor neurons, lacks an effective treatment. A small fraction of amyotrophic lateral sclerosis cases have a familial origin, related to mutations in causative genes, while the vast majority of amyotrophic lateral sclerosis cases are considered to be sporadic, resulting from the interaction between genes and environmental factors in predisposed individuals. During the past few years, dozens of drugs have been postulated as promising strategies for the disease after showing some beneficial effects in preclinical cellular and murine models. However, the translation into clinical practice has been largely unsuccessful and the compounds failed when were tested in clinical trials. This might be explained, at least partially, by the enormous complexity of the disease both from clinico-epidemiological and a pathogenic points of view. In this review, we will briefly comment on the complexity of the disease focusing on some recent findings, and we will suggest how amyotrophic lateral sclerosis research might be reoriented to foster the advance in the diagnostic and therapeutic questions.

7.
Sci Rep ; 8(1): 6434, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29691440

RESUMO

The risk of suffering from Alzheimer's disease (AD) is higher in individuals from AD-affected mothers. The purpose of this investigation was to study whether maternal transmission might produce AD-related alterations in progenies of mice that do not have any genotypic alteration. We used cognitively-intact mothers harbouring in heterozygosity the transgene for overexpressing the Swedish double mutant version of the human amyloid precursor protein (hAßPPswe). The phenotype of the offspring with or without the transgene resulting from crossing young Tg2576 females with wild-type males were compared with those of the offspring resulting from crossing wild-type females with Tg2576 males. The hAßPPswe-bearing offspring from Tg2576 mothers showed an aggravated AD-like phenotype. Remarkably, cognitive, immunohistochemical and some biochemical features displayed by Tg2576 heterozygous mice were also found in wild-type animals generated from Tg2576 females. This suggests the existence of a maternal imprinting in the wild-type offspring that confers a greater facility to launch an AD-like neurodegenerative cascade. Such progeny, lacking any mutant amyloid precursor protein, constitutes a novel model to study maternal transmission of AD and, even more important, to discover early risk markers that predispose to the development of AD.


Assuntos
Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/metabolismo , Impressão Genômica/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Cognição/fisiologia , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Aprendizagem em Labirinto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mães
8.
Mol Neurobiol ; 55(12): 9328-9333, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29671277

RESUMO

Tau is a microtubule-associated protein highly expressed in neurons with a chief role in microtubule dynamics and axonal maintenance. Adrenomedullin gene (ADM) codifies for various peptides that exert broad range of actions in the body. Previous works in our groups have shown that increased ADM products are positively correlated to microtubule disruption and tau pathology in Alzheimer's disease brains. In the present study, we explore the involvement of ADM in the neuropathology of frontotemporal lobar degeneration that presents with primary tauopathy (FTLD-tau). Proteins from frontal cortices of FTLD-tau patients and age- and sex-matched non-demented controls were analyzed with antibodies against different microtubule components, including adrenomedullin, and synaptic markers. Tau pathology in frontal cortex from FTLD patients was confirmed. Levels of total ßIII-tubulin as well as acetylated and detyrosinated tubulins, two markers of stabilized and aged microtubules, were significantly reduced and directly correlated with PSD95 and proBDNF in FTLD-tau patients when compared to non-demented controls. In contrast, no change in actin cytoskeleton was found. Interestingly, changes in microtubule elements, indicators of disturbed axonal preservation, were accompanied by decreased levels of free adrenomedullin, although no association was found. Altogether, reduced levels of adrenomedullin might not be directly linked to the microtubule pathology of FTLD-tau, but based on previous works, it is suggested that downregulation of ADM might be an adaptive attempt of neurons to mitigate microtubule disruption.


Assuntos
Adrenomedulina/metabolismo , Degeneração Lobar Frontotemporal/patologia , Microtúbulos/metabolismo , Adrenomedulina/genética , Idoso , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Feminino , Degeneração Lobar Frontotemporal/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Tauopatias/metabolismo , Tauopatias/patologia , Proteínas tau/metabolismo
9.
Mol Neurobiol ; 55(12): 8799-8814, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29600350

RESUMO

Neurodegenerative diseases represent a heterogeneous group of disorders whose common characteristic is the progressive degeneration of neuronal structure and function. Although much knowledge has been accumulated on the pathophysiology of neurodegenerative diseases over the years, more efforts are needed to understand the processes that underlie these diseases and hence to propose new treatments. Adrenomedullin (AM) is a multifunctional peptide involved in vasodilation, hormone secretion, antimicrobial defense, cellular growth, and angiogenesis. In neurons, AM and related peptides are associated with some structural and functional cytoskeletal proteins that interfere with microtubule dynamics. Furthermore, AM may intervene in neuronal dysfunction through other mechanisms such as immune and inflammatory response, apoptosis, or calcium dyshomeostasis. Alterations in AM expression have been described in neurodegenerative processes such as Alzheimer's disease or vascular dementia. This review addresses the current state of knowledge on AM and its possible implication in neurodegenerative diseases.


Assuntos
Adrenomedulina/antagonistas & inibidores , Terapia de Alvo Molecular , Doenças Neurodegenerativas/terapia , Adrenomedulina/química , Animais , Citoesqueleto/metabolismo , Humanos , Modelos Neurológicos , Neurônios/metabolismo
10.
Mol Neurobiol ; 55(6): 5177-5183, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28866832

RESUMO

Alzheimer's disease (AD) is characterized by the loss of synaptic contacts caused in part by cytoskeleton disruption. Adrenomedullin (AM) is involved in physiological functions such as vasodilation, hormone secretion, antimicrobial activity, cellular growth, and angiogenesis. In neurons, AM and related peptides are associated with some structural and functional cytoskeletal proteins, causing microtubule destabilization. Here, we describe the relationships between AM and other signs of AD in clinical specimens. Frontal cortex from AD patients and controls were studied for AM, acetylated tubulin, NCAM, Ox-42, and neurotransmitters. AM was increased in AD compared with controls, while levels of acetylated tubulin, NCAM, and neurotransmitters were decreased. Interestingly, increases in AM statistically correlated with the decrease in these markers. Furthermore, Ox42 overexpression in AD correlated with levels of AM. It is proposed that AD patients may have neural cytoskeleton failure associated with increase of AM levels, resulting in axon transport collapse and synaptic loss. These observations suggest that reducing AM expression may constitute a new avenue to prevent/treat AD.


Assuntos
Adrenomedulina/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Biomarcadores/metabolismo , Encéfalo/patologia , Antígeno CD11b/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Humanos , Microglia/metabolismo , Tubulina (Proteína)/metabolismo
11.
Front Mol Neurosci ; 10: 384, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29187812

RESUMO

Memory decline is common in elderly individuals and is the hallmark of Alzheimer's disease (AD). Memory failure follows the loss of synaptic contacts in the cerebral cortex and hippocampus, caused in part by cytoskeleton disruption. Adrenomedullin (AM) and its gene-related peptide, proadrenomedullin N-terminal 20 peptide (PAMP), are microtubule-associated proteins (MAP) whose expression has been identified as a potential biomarker for predicting progression from predementia to clinical AD. Here we analyze the connection between AM levels and memory preservation. Mice lacking neuronal AM and PAMP (knockout, KO) and their wild type (WT) littermates were subjected, at different ages, to the novel object recognition test and the contextual fear conditioned test. Aged KO mice have significantly better retention memory than their WT counterparts. This feature was more prominent in females than in males. Prefrontal cortex and hippocampus samples from these animals were subjected to Western blotting for phospho-Tau and acetylated tubulin. Aged female KO mice had significantly less accumulation of phospho-Tau than their WT littermates. In addition, protein extracts from the frontal cortex of non-demented mature (65.10 ± 3.86 years) and aged (77.14 ± 2.77 years) human donors were analyzed by Western blotting. Aged human brains had significantly higher levels of AM and lower levels of acetylated tubulin than younger donors. These observations suggest that drugs or interventions that reduce AM/PAMP expression may constitute a new avenue to prevent memory decline during normal aging and in patients suffering moderate AD in high risk of rapid cognitive decline.

12.
Expert Rev Mol Med ; 19: e7, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28597807

RESUMO

Amyotrophic lateral sclerosis (ALS) is a severe neuromuscular disease characterised by a progressive loss of motor neurons that usually results in paralysis and death within 2 to 5 years after disease onset. The pathophysiological mechanisms involved in ALS remain largely unknown and to date there is no effective treatment for this disease. Here, we review clinical and experimental evidence suggesting that dysregulation of copper homeostasis in the central nervous system is a crucial underlying event in motor neuron degeneration and ALS pathophysiology. We also review and discuss novel approaches seeking to target copper delivery to treat ALS. These novel approaches may be clinically relevant not only for ALS but also for other neurological disorders with abnormal copper homeostasis, such as Parkinson's, Huntington's and Prion diseases.


Assuntos
Esclerose Lateral Amiotrófica/etiologia , Esclerose Lateral Amiotrófica/metabolismo , Cobre/metabolismo , Animais , Transporte Biológico , Sistema Nervoso Central/metabolismo , Homeostase , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Neurônios Motores/metabolismo , Doenças do Sistema Nervoso/etiologia , Doenças do Sistema Nervoso/metabolismo , Oxirredução
13.
Biochim Biophys Acta ; 1832(6): 837-47, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23474306

RESUMO

Education and cognitive occupations are commonly associated to reduce risk of Alzheimer's disease (AD) or dementia. Animal studies have demonstrated that cognitive stimulation (CS) achieved by social/physical activities and/or enriched environments compensates for memory decline. We have elaborated a novel paradigm of CS that is devoid of physical/social activity and enriched environments. 4 month-old Tg2576 mice were cognitively trained for 8 weeks and, after a break of 8 months, long-lasting effects of CS on cognitive abilities and AD-like pathology were measured. Morris Water Maze (MWM) and Novel Object Recognition (NOR) tests showed that deficits in spatial and recognition memories were compensated by CS. These outcomes were accompanied by increased levels of hippocampal post-synaptic markers (PSD95 and NR1) and proteins involved in synaptic formation (Arc, ß-catenin). CS softened amyloid pathology in terms of reduced levels of Aß1-42 and the dodecameric assembly, referred as Aß*56. CS appeared to affect the APP processing since differences in levels of ADAM17, BACE1 and C99/C83 ratio were found. Tau hyper-phosphorylation and high activities of tau kinases were also reduced by CS. In contrast, CS did not induce any of these molecular changes in wild-type mice. The present findings suggest beneficial and long-lasting effects of CS early in life on cognitive decline and AD-like pathology.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Precursor de Proteína beta-Amiloide/biossíntese , Comportamento Animal , Cognição , Aprendizagem em Labirinto , Antígeno 12E7 , Proteínas ADAM/biossíntese , Proteínas ADAM/genética , Proteína ADAM17 , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/biossíntese , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Antígenos CD/biossíntese , Antígenos CD/genética , Ácido Aspártico Endopeptidases/biossíntese , Ácido Aspártico Endopeptidases/genética , Biomarcadores/metabolismo , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large , Feminino , Guanilato Quinases/biossíntese , Guanilato Quinases/genética , Hipocampo/metabolismo , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Imunoglobulinas/biossíntese , Imunoglobulinas/genética , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/genética , Proteínas de Membrana/biossíntese , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Receptores de N-Metil-D-Aspartato , Antígeno CD83
14.
Neurobiol Dis ; 48(3): 439-46, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22759926

RESUMO

The main pathological hallmarks of Alzheimer's disease (AD) consist of amyloid plaques and neurofibrillary tangles. Hippocampal cell loss, atrophy and cholinergic dysfunction are also features of AD. The present work is aimed at studying the interactions between cholinergic denervation, APP processing and hippocampal integrity. The cholinergic immunotoxin mu p-75-saporin was injected into the 3rd ventricle of 6- to 8-month-old Tg2576 mice to induce a cholinergic denervation. Four weeks after cholinergic immunolesion, a significant 14-fold increase of soluble Aß1-42 was observed. Cholinergically lesioned Tg2576 mice showed hippocampal atrophy together with degenerating FluoroJade-B-stained neurons and reduction of synaptophysin expression in CA1-3 pyramidal layers. We also found that cholinergic denervation led to reduced levels of ADAM17 in hippocampus of Tg2576 mice. Inhibition of ADAM17 with TAPI-2 (5 µM) decreased viability of hippocampal primary neurons from Tg2576 brains and decreased phosphorylation of downstream effectors of trophic signalling (ERK and Akt). The cholinergic agonist carbachol (100 µM) rescued these effects, suggesting that cholinergic deficits might render hippocampus more vulnerable to neurotoxicity upon certain toxic environments. The present work proposes a novel model of AD that worsens the patent amyloid pathology of Tg2576 mice together with hippocampal synaptic pathology and neurodegeneration. Drugs aimed at favoring cholinergic transmission should still be considered as potential treatments of AD.


Assuntos
Acetilcolina/deficiência , Doença de Alzheimer/patologia , Neurônios Colinérgicos/metabolismo , Modelos Animais de Doenças , Hipocampo/patologia , Proteínas Amiloidogênicas , Animais , Atrofia , Western Blotting , Neurônios Colinérgicos/patologia , Denervação/métodos , Imunofluorescência , Imunotoxinas/toxicidade , Hibridização In Situ , Camundongos , Camundongos Transgênicos , Saponinas/toxicidade
15.
Electrophoresis ; 32(19): 2757-64, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21983823

RESUMO

Chiral micellar electrokinetic chromatography with laser-induced fluorescence detection (chiral-MEKC-LIF) was used to investigate D- and L-amino acid contents in cerebrospinal fluid (CSF) samples related to different Alzheimer disease (AD) stages. CSF samples were taken from (i) control subjects (S1 pool), (ii) subjects showing a mild cognitive impairment who remained stable (S2 pool), (iii) subjects showing an mild cognitive impairment that progressed to AD (S3 pool) and (iv) subjects diagnosed with AD (S4 pool). The optimized procedure only needed 10 µL of CSF and it included sample cleaning, derivatization with FITC and chiral-MEKC-LIF separation. Eighteen standard amino acids were baseline separated with efficiencies up to 703,000 plates/m, high sensitivity (LODs in the nM range) and good resolution (values ranging from 2.6 to 9.5). Using this method, L-Arg, L-Leu, L-Gln, γ-aminobutyric acid, L-Ser, D-Ser, L-Ala, Gly, L-Lys, L-Glu and L-Asp were detected in all the CSF samples. S3 and S4 samples (i.e. AD subjects) showed significant lower amounts of L-Arg L-Lys, L-Glu and L-Asp compared to the non-AD S1 and S2 samples, showing in the S4 group the lowest amounts of L-Arg L-Lys, L-Glu and L-Asp. Moreover, γ-aminobutyric acid was significantly higher in AD subjects with the highest amount also found for S4. No significant differences were observed for the rest of amino acids including D-Ser. Based on the obtained chiral-MEKC-LIF data, it was possible to correctly classify all the samples into the four groups. These results demonstrate that the use of enantioselective procedures as the one developed in this work can provide some new light on the investigations of AD, including the discovery of new biomarkers related to different stages of AD.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Aminoácidos/líquido cefalorraquidiano , Cromatografia Capilar Eletrocinética Micelar/métodos , Análise de Variância , Biomarcadores/líquido cefalorraquidiano , Estudos de Casos e Controles , Progressão da Doença , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estereoisomerismo
16.
Hippocampus ; 21(9): 999-1009, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20865740

RESUMO

Recent evidence suggests that activity-regulated cytoskeleton associated protein (Arc) and brain-derived neurotrophic factor (BDNF) are key players in the cellular mechanisms that trigger synaptic changes and memory consolidation. Cholinergic deafferentiation of hippocampus has been largely shown to induce memory impairments in different behavioral tasks. However, the mechanisms underlying cholinergic-induced memory formation remain unclear. The role of hippocampal cholinergic denervation on synaptic consolidation and further acquisition of spatial memory was hereby examined by analyzing Arc and BDNF in standard environment and after behavioral training in Morris water maze (MWM). In standard environment, a cholinergic hypofunction induced by the toxin (192) IgG-saporin led to significant decreases in Arc protein and mRNA as well as in BDNF. Lesioned rats subjected to MWM showed a worse acquisition performance that was reversed after galantamine treatment. Recovery of memory acquisition was accompanied by normalization of Arc and BDNF levels in hippocampus. Stimulation of muscarinic, but not nicotinic receptors, in hippocampal primary neurons caused a rapid induction of Arc production. These data suggest that cholinergic denervation of hippocampus leads to deficits in muscarinic-dependent induction of Arc and a subsequent impairment of spatial memory acquisition.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas do Citoesqueleto/metabolismo , Hipocampo/metabolismo , Aprendizagem em Labirinto/fisiologia , Memória/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Receptores Muscarínicos/metabolismo , Acetilcolina/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Fibras Colinérgicas/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Proteínas do Citoesqueleto/genética , Feminino , Galantamina/farmacologia , Hipocampo/efeitos dos fármacos , Hipocampo/cirurgia , Imunotoxinas/farmacologia , Masculino , Transtornos da Memória/metabolismo , Proteínas do Tecido Nervoso/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Receptores Nicotínicos/metabolismo , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Saporinas
17.
J Alzheimers Dis ; 22(3): 829-38, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20858975

RESUMO

The present work investigated the involvement of cortisol and its receptors, glucocorticoid receptor (GR) and mineralocorticoid receptor (MR), in Alzheimer's disease (AD). Cortisol was measured in cerebrospinal fluid (CSF) samples from controls, mild cognitive impairment (MCI), progressive MCI evolving to AD, and AD. CSF cortisol levels do not seem to have a prognostic value, as increases in cortisol levels were found only in AD patients. GR expression was decreased while MR expression was increased in the frontal cortex of AD. When considering degeneration (ratio to synaptophysin and the post-synaptic marker PSD95), GR expression was similar between controls and AD, suggesting that GR loss was due to synaptic degeneration in AD. Increases in cortisol levels and MR expression were associated to an apolipoprotein E4 genotype. Cognitive status was negatively associated to CSF cortisol. In apolipoprotein E4 carriers, MR but not GR expression, negatively correlated to Mini-Mental Status Examination score and positively correlated to frontal cortex amyloid-ß levels. It is concluded that there is a dysregulation of the hypothalamus-pituitary-adrenal axis in AD that seems to be consequence rather than cause of AD.


Assuntos
Doença de Alzheimer/genética , Apolipoproteína E4/genética , Sistema Hipotálamo-Hipofisário/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/metabolismo , Biomarcadores/líquido cefalorraquidiano , Feminino , Genótipo , Humanos , Hidrocortisona/líquido cefalorraquidiano , Hidrocortisona/metabolismo , Masculino , Pessoa de Meia-Idade , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo
18.
J Alzheimers Dis ; 22(2): 405-13, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20847404

RESUMO

Previous studies have failed to reach consensus on insulin levels in cerebrospinal fluid of Alzheimer's disease (AD) patients and on its relation to pathological features. We performed a new analysis in patients at different stages of AD, and investigated the relationship of insulin levels with biochemical disease markers and with cognitive score. We included 99 patients from our Memory Clinic (Karolinska University Hospital, Sweden), including: 27 patients with mild AD, 13 that progressed from mild cognitive impairment (MCI) to AD in two years time, 26 with MCI stable after two years, and 33 with subjective cognitive impairment. Insulin was significantly decreased in the cerebrospinal fluid of both women and men with mild AD. Insulin deficits were seen in women belonging to both MCI groups, suggesting that this occurs earlier than in men. Insulin was positively associated with amyloid-ß 1-42 (Aß1-42) levels and cognitive score. Furthermore, total-tau/(Aß1-42*insulin) ratio showed strikingly better sensitivity and specificity than the total-tau/Aß1-42 ratio for early AD diagnosis in women.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Transtornos Cognitivos/líquido cefalorraquidiano , Insulina/líquido cefalorraquidiano , Caracteres Sexuais , Idoso , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Análise de Variância , Progressão da Doença , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Fragmentos de Peptídeos/líquido cefalorraquidiano , Análise de Regressão
19.
J Alzheimers Dis ; 20(2): 659-68, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20164549

RESUMO

Neurotransmitter system dysfunction and synapse loss have been recognized as hallmarks of Alzheimer's disease (AD). Our hypothesis is that specific neurochemical populations of neurons might be more vulnerable to degeneration in AD due to particular deficits in synaptic plasticity. We have studied, in postmortem brain tissue, the relationship between levels of synaptic markers (NCAM and BDNF), neurochemical measurements (cholinacetyltransferase activity, serotonin, dopamine, GABA, and glutamate levels), and clinical data (cognitive status measured as MMSE score). NCAM levels in frontal and temporal cortex from AD patients were significantly lower than control patients. Interestingly, these reductions in NCAM levels were associated to an ApoE4 genotype. Levels of BDNF were also significantly reduced in both frontal and temporal regions in AD patients. The ratio between plasticity markers and neurochemical measurements was used to study which of the neurochemical populations was particularly associated to plasticity changes. In both the frontal and temporal cortex, there was a significant reduction in the ChAT/NCAM ratio in AD samples compared to controls. None of the ratios to BDNF were different between control and AD samples. Furthermore, Pearson's product moment showed a significant positive correlation between MMSE score and the ChAT/NCAM ratio in frontal cortex (n=19; r=0.526*; p=0.037) as well as in temporal cortex (n=19; r=0.601*; p=0.018) in AD patients. Altogether, these data suggest a potential involvement of NCAM expressing neurons in the cognitive deficits in AD.


Assuntos
Doença de Alzheimer , Colina O-Acetiltransferase/metabolismo , Lobo Frontal/metabolismo , Regulação da Expressão Gênica/fisiologia , Moléculas de Adesão de Célula Nervosa/metabolismo , Lobo Temporal/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Apolipoproteína E4 , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cromatografia Líquida de Alta Pressão/métodos , Eletroquímica/métodos , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Masculino , Entrevista Psiquiátrica Padronizada , Neurotransmissores/metabolismo , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA