Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Rev Esp Cir Ortop Traumatol ; 67(2): 144-152, 2023.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-35809779

RESUMO

BACKGROUND: Calcaneal fractures can be high energy intra-articular injuries associated with joint depression. Challenges to fracture reduction include lateral wall blow out, medial wall overlap, comminution and central bone loss. Secondary deformity such as hindfoot varus alters foot biomechanics. Minimally invasive approaches with indirect reduction of the calcaneal tuberosity to maintain the reduction using posterior screws is routinely being used in the treatment of joint depression fractures. Biomechanically, optimum screw numbers and configuration is not known. Biomechanical studies have evaluated and proposed different screw configurations, however, it is not clear which configuration best controls varus deformity. This study aims to determine the optimum screw configuration to control varus deformity in Sanders 2B calcaneal fractures. METHODS: Sawbone models were prepared to replicate Sanders type 2-B fracture, with central bone loss and comminution. 0.5cm medial wedge of the calcaneal tuberosity was removed to create varus instability. After stabilising posterior facet with a single 4mm partial threaded screw, and applied an 8 hole contoured plate to stabilise the angle of Gissane, inserted one or two 7mm cannulated partially threaded Charlotte™ (Wright Medical Technology, Inc. 5677 Airline Road Arlington, TN) Headless Multi-use Compression (under image guidance) extra screws to control varus and subsidence deformity of the fracture. Coronal plane displacement of the dissociated calcaneal tuberosity fragment relative to the body when applying 5N, 10N and 20N force was measured in millimetres (mm). RESULTS: 2 screws inserted (one medial screw into the sustentaculum talus from inferior to superior and, one lateral screw into the long axis anterior process) provides the least displacement (0.88±0.390 at 5N and 1.7±1.251 at 20N) and the most stable construct (p<0.05) when compared to other configurations. A single medial screw into the sustentaculum tali (conf. 3) resulted in the least stable construct and most displacement (4.04±0.971 at 5N and 11.24±7.590 at 20N) (p<0.05). CONCLUSION: This study demonstrates the optimal screw configuration to resist varus in calcaneal fractures using minimally invasive techniques. Optimal stability is achieved using 2 screws; one located along the long axis of the calcaneus (varus control) and the other placed in the short axis directed towards the posterior facet of the calcaneus (control varus and subsidence). Further cadaver research would help evaluate optimal screw placement in simulated fractures to further assess reproducibility.


Assuntos
Traumatismos do Tornozelo , Traumatismos do Pé , Fraturas Ósseas , Fraturas Cominutivas , Hallux Varus , Traumatismos do Joelho , Humanos , Fixação Interna de Fraturas/métodos , Reprodutibilidade dos Testes , , Parafusos Ósseos
2.
Rev Esp Cir Ortop Traumatol ; 67(2): T144-T152, 2023.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-36528297

RESUMO

BACKGROUND: Calcaneal fractures can be high energy intra-articular injuries associated with joint depression. Challenges to fracture reduction include lateral wall blow out, medial wall overlap, comminution and central bone loss. Secondary deformity such as hindfoot varus alters foot biomechanics. Minimally invasive approaches with indirect reduction of the calcaneal tuberosity to maintain the reduction using posterior screws is routinely being used in the treatment of joint depression fractures. Biomechanically, optimum screw numbers and configuration is not known. Biomechanical studies have evaluated and proposed different screw configurations, however, it is not clear which configuration best controls varus deformity. This study aims to determine the optimum screw configuration to control varus deformity in Sanders 2B calcaneal fractures. METHODS: Sawbone models were prepared to replicate Sanders type 2-B fracture, with central bone loss and comminution. 0.5 cm medial wedge of the calcaneal tuberosity was removed to create varus instability. After stabilising posterior facet with a single 4 mm partial threaded screw, and applied an 8 hole contoured plate to stabilise the angle of Gissane, inserted one or two 7 mm cannulated partially threaded CharlotteTM (Wright Medical Technology, Memphis, USA) Headless Multi-use Compression (under image guidance) extra screws to control varus and subsidence deformity of the fracture. Coronal plane displacement of the dissociated calcaneal tuberosity fragment relative to the body when applying 5 N, 10 N and 20 N force was measured in millimetres (mm). RESULTS: 2 screws inserted (one medial screw into the sustentaculum talus from inferior to superior and, one lateral screw into the long axis anterior process) provides the least displacement (0.88 ± 0.390 at 5 N and 1.7 ± 1.251 at 20 N) and the most stable construct (p < 0.05) when compared to other configurations. A single medial screw into the sustentaculum tali (conf. 3) resulted in the least stable construct and most displacement (4.04 ± 0.971 at 5 N and 11.24 ± 7.590 at 20 N) (p < 0.05). CONCLUSION: This study demonstrates the optimal screw configuration to resist varus in calcaneal fractures using minimally invasive techniques. Optimal stability is achieved using 2 screws; one located along the long axis of the calcaneus (varus control) and the other placed in the short axis directed towards the posterior facet of the calcaneus (control varus and subsidence). Further cadaver research would help evaluate optimal screw placement in simulated fractures to further assess reproducibility.


Assuntos
Traumatismos do Tornozelo , Traumatismos do Pé , Fraturas Ósseas , Fraturas Cominutivas , Traumatismos do Joelho , Humanos , Fixação Interna de Fraturas/métodos , Reprodutibilidade dos Testes , , Parafusos Ósseos
3.
Rev Esp Cir Ortop Traumatol ; 59(1): 26-35, 2015.
Artigo em Espanhol | MEDLINE | ID: mdl-25088240

RESUMO

OBJECTIVE: The purpose of this study is to assess the need to lock the Gamma 3 nail (Stryker, Mahwah New Jersey USA) distally for intertrochanteric fractures of femur 31-A1 and 31-A2 of the AO. MATERIAL AND METHODS: Details were recorded on a sample of 177 patients with intertrochanteric femoral fractures treated in our hospital by a standard Gamma nail between June 2011 and January 2013. A prospective study was conducted by randomizing patients by year of birth, even numbers with, or odd number without, distal locking, forming two groups of 90 and 87 fractures, respectively. RESULTS: The patients treated with a distal locking nail had an increased incidence of medical complications, a lower incidence of biomechanical complications, and an increase in the fracture collapse compared with the control group, with statistical significance (p < 0.05). It is also observed in the group with distal locking increased transfusion requirement and a higher death rate, with statistically significant differences (p < 0.05), but this significance disappears when adjusting for other patient-related characteristics. CONCLUSIONS: Based on the results found in this work, the use of distal locking screw in the Gamma 3 nails should be restricted to unstable trochanteric fractures after reduction where additional stability to the intramedullary nail is required, and may decrease the risk of complications from use.


Assuntos
Pinos Ortopédicos , Fixação Intramedular de Fraturas/métodos , Fraturas do Quadril/cirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Fixação Intramedular de Fraturas/instrumentação , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA