Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chembiochem ; 24(20): e202300400, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37518671

RESUMO

5-Methylcytosine and 5-hydroxymethylcytosine are epigenetic modifications involved in gene regulation and cancer. We present a new, simple, and high-throughput platform for multi-color epigenetic analysis. The novelty of our approach is the ability to multiplex methylation and de-methylation signals in the same assay. We utilize an engineered methyltransferase enzyme that recognizes and labels all unmodified CpG sites with a fluorescent cofactor. In combination with the already established labeling of the de-methylation mark 5-hydroxymethylcytosine via enzymatic glycosylation, we obtained a robust platform for simultaneous epigenetic analysis of these marks. We assessed the global epigenetic levels in multiple samples of colorectal cancer and observed a 3.5-fold reduction in 5hmC levels but no change in DNA methylation levels between sick and healthy individuals. We also measured epigenetic modifications in chronic lymphocytic leukemia and observed a decrease in both modification levels (5-hydroxymethylcytosine: whole blood 30 %; peripheral blood mononuclear cells (PBMCs) 40 %. 5-methylcytosine: whole blood 53 %; PBMCs 48 %). Our findings propose using a simple blood test as a viable method for analysis, simplifying sample handling in diagnostics. Importantly, our results highlight the assay's potential for epigenetic evaluation of clinical samples, benefiting research and patient management.


Assuntos
5-Metilcitosina , Leucócitos Mononucleares , Humanos , 5-Metilcitosina/análise , Fluorescência , Leucócitos Mononucleares/química , Metilação de DNA , DNA/genética , Genômica
2.
Biophys Rep (N Y) ; 1(2): None, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34939047

RESUMO

Mapping DNA damage and its repair has immense potential in understanding environmental exposures, their genotoxicity, and their impact on human health. Monitoring changes in genomic stability also aids in the diagnosis of numerous DNA-related diseases, such as cancer, and assists in monitoring their progression and prognosis. Developments in recent years have enabled unprecedented sensitivity in quantifying the global DNA damage dose in cells via fluorescence-based analysis down to the single-molecule level. However, genome-wide maps of DNA damage distribution are challenging to produce. Here, we describe the localization of DNA damage and repair loci by repair-assisted damage detection sequencing (RADD-seq). Based on the enrichment of damage lesions coupled with a pull-down assay and followed by next-generation sequencing, this method is easy to perform and can produce compelling results with minimal coverage. RADD-seq enables the localization of both DNA damage and repair sites for a wide range of single-strand damage types. Using this technique, we created a genome-wide map of the oxidation DNA damage lesion 8-oxo-7,8-dihydroguanine before and after repair. Oxidation lesions were heterogeneously distributed along the human genome, with less damage occurring in tight chromatin regions. Furthermore, we showed repair is prioritized for highly expressed, essential genes and in open chromatin regions. RADD-seq sheds light on cellular repair mechanisms and is capable of identifying genomic hotspots prone to mutation.

3.
Anal Chem ; 92(14): 9887-9894, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32578422

RESUMO

Knowing the amount and type of DNA damage is of great significance for a broad range of clinical and research applications. However, existing methods are either lacking in their ability to distinguish between types of DNA damage or limited in their sensitivity and reproducibility. The method described herein enables rapid and robust quantification of type-specific single-strand DNA damage. The method is based on repair-assisted damage detection (RADD) by which fluorescent nucleotides are incorporated into DNA damage sites using type-specific repair enzymes. Up to 90 DNA samples are then deposited on a multiwell glass slide, and analyzed by a conventional slide scanner for quantification of DNA damage levels. Accurate and sensitive measurements of oxidative or UV-induced DNA damage levels and repair kinetics are presented for both in vitro and in vivo models.


Assuntos
Dano ao DNA/efeitos da radiação , Reparo do DNA , Animais , Brometos , Linhagem Celular Tumoral , DNA de Cadeia Simples , Humanos , Camundongos , Oxirredução , Compostos de Potássio , Reprodutibilidade dos Testes , Raios Ultravioleta
4.
Int J Cancer ; 146(1): 115-122, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31211411

RESUMO

Epigenetic transformations may provide early indicators for cancer and other disease. Specifically, the amount of genomic 5-hydroxymethylcytosine (5-hmC) was shown to be globally reduced in a wide range of cancers. The integration of this global biomarker into diagnostic workflows is hampered by the limitations of current 5-hmC quantification methods. Here we present and validate a fluorescence-based platform for high-throughput and cost-effective quantification of global genomic 5-hmC levels. We utilized the assay to characterize cancerous tissues based on their 5-hmC content, and observed a pronounced reduction in 5-hmC level in various cancer types. We present data for glioblastoma, colorectal cancer, multiple myeloma, chronic lymphocytic leukemia and pancreatic cancer, compared to corresponding controls. Potentially, the technique could also be used to follow response to treatment for personalized treatment selection. We present initial proof-of-concept data for treatment of familial adenomatous polyposis.


Assuntos
5-Metilcitosina/análogos & derivados , Biomarcadores Tumorais/metabolismo , Epigênese Genética , Ensaios de Triagem em Larga Escala/métodos , Neoplasias/genética , 5-Metilcitosina/metabolismo , Animais , Análise Custo-Benefício , Fluorescência , Ensaios de Triagem em Larga Escala/economia , Humanos , Camundongos , Neoplasias/classificação , Estudo de Prova de Conceito
5.
Epigenetics ; 14(12): 1183-1193, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31262215

RESUMO

DNA methylation patterns create distinct gene-expression profiles. These patterns are maintained after cell division, thus enabling the differentiation and maintenance of multiple cell types from the same genome sequence. The advantage of this mechanism for transcriptional control is that chemical-encoding allows to rapidly establish new epigenetic patterns 'on-demand' through enzymatic methylation and demethylation of DNA. Here we show that this feature is associated with the fast response of macrophages during their pro-inflammatory activation. By using a combination of mass spectroscopy and single-molecule imaging to quantify global epigenetic changes in the genomes of primary macrophages, we followed three distinct DNA marks (methylated, hydroxymethylated and unmethylated), involved in establishing new DNA methylation patterns during pro-inflammatory activation. The observed epigenetic modulation together with gene-expression data generated for the involved enzymatic machinery may suggest that de-methylation upon LPS-activation starts with oxidation of methylated CpGs, followed by excision-repair of these oxidized bases and their replacement with unmodified cytosine.


Assuntos
Metilação de DNA , Epigênese Genética , Ativação de Macrófagos/genética , Animais , Células Cultivadas , Ilhas de CpG , Macrófagos/imunologia , Camundongos
6.
Nanotechnology ; 30(4): 045101, 2019 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-30485249

RESUMO

DNA combing is a widely used method for stretching and immobilising DNA molecules on a surface. Fluorescent labelling of genomic information enables high-resolution optical analysis of DNA at the single-molecule level. Despite its simplicity, the application of DNA combing in diagnostic workflows is still limited, mainly due to difficulties in analysing multiple small-volume DNA samples in parallel. Here, we report a simple and versatile microfluidic DNA combing technology (µDC), which allows manipulating, stretching and imaging of multiple, microliter scale DNA samples by employing a manifold of parallel microfluidic channels. Using DNA molecules with repetitive units as molecular rulers, we demonstrate that the µDC technology allows uniform stretching of DNA molecules. The stretching ratio remains consistent along individual molecules as well as between different molecules in the various channels, allowing simultaneous quantitative analysis of different samples loaded into parallel channels. Furthermore, we demonstrate the application of µDC to characterise UVB-induced DNA damage levels in human embryonic kidney cells and the spatial correlation between DNA damage sites. Our results point out the potential application of µDC for quantitative and comparative single-molecule studies of genomic features. The extremely simple design of µDC makes it suitable for integration into other microfluidic platforms to facilitate high-throughput DNA analysis in biological research and medical point-of-care applications.


Assuntos
DNA/análise , Técnicas Analíticas Microfluídicas/métodos , Imagem Individual de Molécula/métodos , DNA/efeitos da radiação , Dano ao DNA , Células HEK293 , Humanos , Imagem Óptica , Sistemas Automatizados de Assistência Junto ao Leito
7.
Clin Epigenetics ; 9: 70, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28725280

RESUMO

BACKGROUND: The DNA modification 5-hydroxymethylcytosine (5hmC) is now referred to as the sixth base of DNA with evidence of tissue-specific patterns and correlation with gene regulation and expression. This epigenetic mark was recently reported as a potential biomarker for multiple types of cancer, but its application in the clinic is limited by the utility of recent 5hmC quantification assays. We use a recently developed, ultra-sensitive, fluorescence-based single-molecule method for global quantification of 5hmC in genomic DNA. The high sensitivity of the method gives access to precise quantification of extremely low 5hmC levels common in many cancers. METHODS: We assessed 5hmC levels in DNA extracted from a set of colon and blood cancer samples and compared 5hmC levels with healthy controls, in a single-molecule approach. RESULTS: Using our method, we observed a significantly reduced level of 5hmC in blood and colon cancers and could distinguish between colon tumor and colon tissue adjacent to the tumor based on the global levels of this molecular biomarker. CONCLUSIONS: Single-molecule detection of 5hmC allows distinguishing between malignant and healthy tissue in clinically relevant and accessible tissue such as blood and colon. The presented method outperforms current commercially available quantification kits and may potentially be developed into a widely used, 5hmC quantification assay for research and clinical diagnostics. Furthermore, using this method, we confirm that 5hmC is a good molecular biomarker for diagnosing colon and various types of blood cancer.


Assuntos
5-Metilcitosina/análogos & derivados , Neoplasias do Colo/diagnóstico , Neoplasias Hematológicas/diagnóstico , Imagem Individual de Molécula/métodos , 5-Metilcitosina/análise , Neoplasias do Colo/genética , DNA de Neoplasias/genética , Epigênese Genética , Neoplasias Hematológicas/genética , Humanos , Microscopia de Fluorescência , Sensibilidade e Especificidade
8.
Anal Chem ; 86(16): 8231-7, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25072105

RESUMO

5-Hydroxymethylcytosine (5hmC), a modified form of the DNA base cytosine, is an important epigenetic mark linked to regulation of gene expression in development, and tumorigenesis. We have developed a spectroscopic method for a global quantification of 5hmC in genomic DNA. The assay is performed within a multiwell plate, which allows simultaneous recording of up to 350 samples. Our quantification procedure of 5hmC is direct, simple, and rapid. It relies on a two-step protocol that consists of enzymatic glucosylation of 5hmC with an azide-modified glucose, followed by a "click reaction" with an alkyne-fluorescent tag. The fluorescence intensity recorded from the DNA sample is proportional to its 5hmC content and can be quantified by a simple plate reader measurement. This labeling technique is specific and highly sensitive, allowing detection of 5hmC down to 0.002% of the total nucleotides. Our results reveal significant variations in the 5hmC content obtained from different mouse tissues, in agreement with previously reported data.


Assuntos
Citosina/análogos & derivados , DNA/química , Genômica/instrumentação , Espectrometria de Fluorescência/instrumentação , 5-Metilcitosina/análogos & derivados , Animais , Sequência de Bases , Citosina/análise , Metilação de DNA , DNA Fúngico/química , Desenho de Equipamento , Limite de Detecção , Camundongos , Dados de Sequência Molecular , Saccharomyces cerevisiae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA