RESUMO
More than half of the ~20,000 protein-encoding human genes have paralogs. Chemical proteomics has uncovered many electrophile-sensitive cysteines that are exclusive to subsets of paralogous proteins. Here we explore whether such covalent compound-cysteine interactions can be used to discover ligandable pockets in paralogs lacking the cysteine. Leveraging the covalent ligandability of C109 in the cyclin CCNE2, we substituted the corresponding residue in paralog CCNE1 to cysteine (N112C) and found through activity-based protein profiling that this mutant reacts stereoselectively and site-specifically with tryptoline acrylamides. We then converted the tryptoline acrylamide-CCNE1-N112C interaction into in vitro NanoBRET (bioluminescence resonance energy transfer) and in cellulo activity-based protein profiling assays capable of identifying compounds that reversibly inhibit both the N112C mutant and wild-type CCNE1:CDK2 (cyclin-dependent kinase 2) complexes. X-ray crystallography revealed a cryptic allosteric pocket at the CCNE1:CDK2 interface adjacent to N112 that binds the reversible inhibitors. Our findings, thus, show how electrophile-cysteine interactions mapped by chemical proteomics can extend the understanding of protein ligandability beyond covalent chemistry.
RESUMO
More than half of the ~20,000 protein-encoding human genes have at least one paralog. Chemical proteomics has uncovered many electrophile-sensitive cysteines that are exclusive to a subset of paralogous proteins. Here, we explore whether such covalent compound-cysteine interactions can be used to discover ligandable pockets in paralogs that lack the cysteine. Leveraging the covalent ligandability of C109 in the cyclin CCNE2, we mutated the corresponding residue in paralog CCNE1 to cysteine (N112C) and found through activity-based protein profiling (ABPP) that this mutant reacts stereoselectively and site-specifically with tryptoline acrylamides. We then converted the tryptoline acrylamide-N112C-CCNE1 interaction into a NanoBRET-ABPP assay capable of identifying compounds that reversibly inhibit both N112C- and WT-CCNE1:CDK2 complexes. X-ray crystallography revealed a cryptic allosteric pocket at the CCNE1:CDK2 interface adjacent to N112 that binds the reversible inhibitors. Our findings thus provide a roadmap for leveraging electrophile-cysteine interactions to extend the ligandability of the proteome beyond covalent chemistry.
RESUMO
Targeted protein degradation has emerged from the chemical biology toolbox as one of the most exciting areas for novel therapeutic development across the pharmaceutical industry. The ability to induce the degradation, and not just inhibition, of target proteins of interest (POIs) with high potency and selectivity is a particularly attractive property for a protein degrader therapeutic. However, the physicochemical properties and mechanism of action for protein degraders can lead to unique pharmacokinetic (PK) and pharmacodynamic (PD) properties relative to traditional small molecule drugs, requiring a shift in perspective for translational pharmacology. In this review, we provide practical insights for building the PK-PD understanding of protein degraders in the context of translational drug development through the use of quantitative mathematical frameworks and standard experimental assays. Published datasets describing protein degrader pharmacology are used to illustrate the applicability of these insights. The learnings are consolidated into a translational PK-PD roadmap for targeted protein degradation that can enable a systematic, rational design workflow for protein degrader therapeutics.
Assuntos
Modelos Biológicos , ProteóliseRESUMO
The ring strain present in azetidines can lead to undesired stability issues. Herein, we described a series of N-substituted azetidines which undergo an acid-mediated intramolecular ring-opening decomposition via nucleophilic attack of a pendant amide group. Studies were conducted to understand the decomposition mechanism enabling the design of stable analogues.
RESUMO
Bispecific protein degraders (BPDs) engage the ubiquitin-proteasome system (UPS) to catalytically degrade intracellular proteins through the formation of ternary complexes with the target protein and E3 ubiquitin ligases. Here, we describe the development of a mechanistic modeling framework for BPDs that includes the reaction network governing ternary complex formation and degradation via the UPS. A critical element of the model framework is a multi-step process that results in a time delay between ternary complex formation and protein degradation, thereby balancing ternary complex stability against UPS degradation rates akin to the kinetic proofreading concept that has been proposed to explain the accuracy and specificity of biological processes including protein translation and T cell receptor signal transduction. Kinetic proofreading likely plays a central role in the cell's ability to regulate substrate recognition and degradation by the UPS, and the model presented here applies this concept in the context of a quantitative pharmacokinetic (PK)-pharmacodynamic (PD) framework to inform the design of potent and selective BPDs.
Assuntos
Desenho de Fármacos , Complexo de Endopeptidases do Proteassoma/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ubiquitina/agonistas , Simulação por Computador , Humanos , Modelos Biológicos , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismoRESUMO
Heterobifunctional chimeric degraders are a class of ligands that recruit target proteins to E3 ubiquitin ligases to drive compound-dependent protein degradation. Advancing from initial chemical tools, protein degraders represent a mechanism of growing interest in drug discovery. Critical to the mechanism of action is the formation of a ternary complex between the target, degrader and E3 ligase to promote ubiquitination and subsequent degradation. However, limited insights into ternary complex structures exist, including a near absence of studies on one of the most widely co-opted E3s, cellular inhibitor of apoptosis 1 (cIAP1). In this work, we use a combination of biochemical, biophysical and structural studies to characterize degrader-mediated ternary complexes of Bruton's tyrosine kinase and cIAP1. Our results reveal new insights from unique ternary complex structures and show that increased ternary complex stability or rigidity need not always correlate with increased degradation efficiency.
Assuntos
Tirosina Quinase da Agamaglobulinemia/genética , Proteínas Inibidoras de Apoptose/genética , Cromatografia em Gel , Reagentes de Ligações Cruzadas , Humanos , Cinética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Proteólise , Espectrometria de Massas por Ionização por Electrospray , Ubiquitina-Proteína Ligases , Ubiquitinação , Difração de Raios XRESUMO
Proteolysis targeting chimeras (PROTACs) are heterobifunctional small molecules that simultaneously bind to a target protein and an E3 ligase, thereby leading to ubiquitination and subsequent degradation of the target. They present an exciting opportunity to modulate proteins in a manner independent of enzymatic or signaling activity. As such, they have recently emerged as an attractive mechanism to explore previously "undruggable" targets. Despite this interest, fundamental questions remain regarding the parameters most critical for achieving potency and selectivity. Here we employ a series of biochemical and cellular techniques to investigate requirements for efficient knockdown of Bruton's tyrosine kinase (BTK), a nonreceptor tyrosine kinase essential for B cell maturation. Members of an 11-compound PROTAC library were investigated for their ability to form binary and ternary complexes with BTK and cereblon (CRBN, an E3 ligase component). Results were extended to measure effects on BTK-CRBN cooperative interactions as well as in vitro and in vivo BTK degradation. Our data show that alleviation of steric clashes between BTK and CRBN by modulating PROTAC linker length within this chemical series allows potent BTK degradation in the absence of thermodynamic cooperativity.
Assuntos
Proteínas Tirosina Quinases/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Tirosina Quinase da Agamaglobulinemia , Animais , Células Cultivadas , Ligantes , Poliubiquitina/metabolismo , Ratos , TermodinâmicaRESUMO
The drugable proteome is limited by the number of functional binding sites that can bind small molecules and respond with a therapeutic effect. Orthosteric and allosteric modulators of enzyme function or receptor signaling are well-established mechanisms of drug action. Drugs that perturb protein-protein interactions have only recently been launched. This approach is more difficult due to the extensive contact surfaces that must be perturbed antagonistically. Compounds that promote novel protein-protein interactions promise to dramatically expand opportunities for therapeutic intervention. This approach is precedented with natural products (rapamycin, FK506, sanglifehrin A), synthetic small molecules (thalidomide and IMiD derivatives) and indisulam analogues.
Assuntos
Adesivos/farmacologia , Produtos Biológicos/farmacologia , Regulação Alostérica/efeitos dos fármacos , Descoberta de Drogas , Humanos , Ligantes , Ligação Proteica , Proteólise , Receptores Citoplasmáticos e Nucleares/efeitos dos fármacos , Receptores Citoplasmáticos e Nucleares/metabolismoRESUMO
Monoacylglycerol lipase (MAGL) inhibition provides a potential treatment approach to neuroinflammation through modulation of both the endocannabinoid pathway and arachidonoyl signaling in the central nervous system (CNS). Herein we report the discovery of compound 15 (PF-06795071), a potent and selective covalent MAGL inhibitor, featuring a novel trifluoromethyl glycol leaving group that confers significant physicochemical property improvements as compared with earlier inhibitor series with more lipophilic leaving groups. The design strategy focused on identifying an optimized leaving group that delivers MAGL potency, serine hydrolase selectivity, and CNS exposure while simultaneously reducing log D, improving solubility, and minimizing chemical lability. Compound 15 achieves excellent CNS exposure, extended 2-AG elevation effect in vivo, and decreased brain inflammatory markers in response to an inflammatory challenge.
Assuntos
Anti-Inflamatórios não Esteroides/síntese química , Anti-Inflamatórios não Esteroides/farmacologia , Carbamatos/síntese química , Carbamatos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Monoacilglicerol Lipases/antagonistas & inibidores , Neurite (Inflamação)/tratamento farmacológico , Amidoidrolases/antagonistas & inibidores , Animais , Ácidos Araquidônicos/metabolismo , Biomarcadores , Química Encefálica/efeitos dos fármacos , Cães , Desenho de Fármacos , Descoberta de Drogas , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Humanos , Macaca mulatta , Modelos Moleculares , Ratos , Ratos Wistar , Relação Estrutura-AtividadeRESUMO
In an effort to find new and safer treatments for osteoporosis and frailty, we describe a novel series of selective androgen receptor modulators (SARMs). Using a structure-based approach, we identified compound 7, a potent AR (ARE EC50 = 0.34 nM) and selective (N/C interaction EC50 = 1206 nM) modulator. In vivo data, an AR LBD X-ray structure of 7, and further insights from modeling studies of ligand receptor interactions are also presented.
Assuntos
Anabolizantes/química , Androgênios/química , Nitrilas/química , Pirróis/química , Receptores Androgênicos/metabolismo , Anabolizantes/síntese química , Anabolizantes/farmacocinética , Anabolizantes/farmacologia , Androgênios/síntese química , Androgênios/farmacocinética , Androgênios/farmacologia , Animais , Cristalografia por Raios X , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Masculino , Simulação de Acoplamento Molecular , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Nitrilas/síntese química , Nitrilas/farmacologia , Tamanho do Órgão/efeitos dos fármacos , Especificidade de Órgãos , Próstata/efeitos dos fármacos , Próstata/fisiologia , Pirróis/síntese química , Pirróis/farmacocinética , Pirróis/farmacologia , Ratos , Glândulas Seminais/efeitos dos fármacos , Glândulas Seminais/fisiologia , Relação Estrutura-AtividadeRESUMO
Significant work has been dedicated to the discovery of JAK kinase inhibitors resulting in several compounds entering clinical development and two FDA approved NMEs. However, despite significant effort during the past 2 decades, identification of highly selective JAK3 inhibitors has eluded the scientific community. A significant effort within our research organization has resulted in the identification of the first orally active JAK3 specific inhibitor, which achieves JAK isoform specificity through covalent interaction with a unique JAK3 residue Cys-909. The relatively rapid resynthesis rate of the JAK3 enzyme presented a unique challenge in the design of covalent inhibitors with appropriate pharmacodynamics properties coupled with limited unwanted off-target reactivity. This effort resulted in the identification of 11 (PF-06651600), a potent and low clearance compound with demonstrated in vivo efficacy. The favorable efficacy and safety profile of this JAK3-specific inhibitor 11 led to its evaluation in several human clinical studies.
Assuntos
Janus Quinase 3/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Pirróis/química , Transdução de Sinais/efeitos dos fármacos , Administração Oral , Desenho de Fármacos , Humanos , Janus Quinase 3/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Pirróis/administração & dosagem , Pirróis/farmacologiaRESUMO
The concept of target-specific covalent enzyme inhibitors appears attractive from both an efficacy and a selectivity viewpoint considering the potential for enhanced biochemical efficiency associated with an irreversible mechanism. Aside from potential safety concerns, clearance prediction of covalent inhibitors represents a unique challenge due to the inclusion of nontraditional metabolic pathways of direct conjugation with glutathione (GSH) or via GSH S-transferase-mediated processes. In this article, a novel pharmacokinetic algorithm was developed using a series of Pfizer kinase selective acrylamide covalent inhibitors based on their in vitro-in vivo extrapolation of systemic clearance in rats. The algorithm encompasses the use of hepatocytes as an in vitro model for hepatic clearance due to oxidative metabolism and GSH conjugation, and the use of whole blood as an in vitro surrogate for GSH conjugation in extrahepatic tissues. Initial evaluations with clinical covalent inhibitors suggested that the scaling algorithm developed from rats may also be useful for human clearance prediction when species-specific parameters, such as hepatocyte and blood stability and blood binding, were considered. With careful consideration of clearance mechanisms, the described in vitro-in vivo extrapolation approach may be useful to facilitate candidate optimization, selection, and prediction of human pharmacokinetic clearance during the discovery and development of targeted covalent inhibitors.
Assuntos
Hepatócitos/metabolismo , Microssomos Hepáticos/metabolismo , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Plasma/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Algoritmos , Animais , Avaliação Pré-Clínica de Medicamentos , Glutationa/metabolismo , Humanos , Técnicas In Vitro , Masculino , Taxa de Depuração Metabólica , Camundongos Endogâmicos C57BL , Preparações Farmacêuticas/sangue , Valor Preditivo dos Testes , Ligação Proteica , Inibidores de Proteínas Quinases/sangue , Ratos , Ratos Sprague-Dawley , Especificidade da EspécieRESUMO
Inducing α-helicity through side-chain cross-linking is a strategy that has been pursued to improve peptide conformational rigidity and bio-availability. Here we describe the preparation of small peptides tethered to chiral sulfoxide-containing macrocyclic rings. Furthermore, a study of structure-activity relationships (SARs) disclosed properties with respect to ring size, sulfur position, oxidation state, and stereochemistry that show a propensity to induce α-helicity. Supporting data include circular dichroism spectroscopy (CD), NMR spectroscopy, and a single crystal X-ray structure for one such stabilized peptide. Finally, theoretical studies are presented to elucidate the effect of chiral sulfoxides in inducing backbone α-helicity.
Assuntos
Peptídeos/química , Conformação Proteica em alfa-Hélice , Safrol/análogos & derivados , Dicroísmo Circular , Modelos Moleculares , Oxirredução , Safrol/químicaRESUMO
PF-06651600, a newly discovered potent JAK3-selective inhibitor, is highly efficacious at inhibiting γc cytokine signaling, which is dependent on both JAK1 and JAK3. PF-06651600 allowed the comparison of JAK3-selective inhibition to pan-JAK or JAK1-selective inhibition, in relevant immune cells to a level that could not be achieved previously without such potency and selectivity. In vitro, PF-06651600 inhibits Th1 and Th17 cell differentiation and function, and in vivo it reduces disease pathology in rat adjuvant-induced arthritis as well as in mouse experimental autoimmune encephalomyelitis models. Importantly, by sparing JAK1 function, PF-06651600 selectively targets γc cytokine pathways while preserving JAK1-dependent anti-inflammatory signaling such as the IL-10 suppressive functions following LPS treatment in macrophages and the suppression of TNFα and IL-1ß production in IL-27-primed macrophages. Thus, JAK3-selective inhibition differentiates from pan-JAK or JAK1 inhibition in various immune cellular responses, which could potentially translate to advantageous clinical outcomes in inflammatory and autoimmune diseases.
Assuntos
Artrite Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/tratamento farmacológico , Janus Quinase 3/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Pirróis/uso terapêutico , Animais , Artrite Experimental/imunologia , Modelos Animais de Doenças , Descoberta de Drogas , Encefalomielite Autoimune Experimental/imunologia , Humanos , Interleucina-10/imunologia , Interleucina-1beta/imunologia , Janus Quinase 1/antagonistas & inibidores , Janus Quinase 1/metabolismo , Janus Quinase 3/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Modelos Moleculares , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacocinética , Pirimidinas/farmacologia , Pirróis/farmacocinética , Pirróis/farmacologia , Ratos , Células Th1/citologia , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th17/citologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Fator de Necrose Tumoral alfa/imunologiaRESUMO
Lysophospholipase-like 1 (LYPLAL1) is an uncharacterized metabolic serine hydrolase. Human genome-wide association studies link variants of the gene encoding this enzyme to fat distribution, waist-to-hip ratio, and nonalcoholic fatty liver disease. We describe the discovery of potent and selective covalent small-molecule inhibitors of LYPLAL1 and their use to investigate its role in hepatic metabolism. In hepatocytes, selective inhibition of LYPLAL1 increased glucose production supporting the inference that LYPLAL1 is a significant actor in hepatic metabolism. The results provide an example of how a selective chemical tool can contribute to evaluating a hypothetical target for therapeutic intervention, even in the absence of complete biochemical characterization.
Assuntos
Hidrolases/metabolismo , Lisofosfolipase/antagonistas & inibidores , Serina/metabolismo , Animais , Cristalização , Cristalografia por Raios X , Inibidores Enzimáticos/farmacologia , Humanos , Lisofosfolipase/químicaRESUMO
Interest in drugs that covalently modify their target is driven by the desire for enhanced efficacy that can result from the silencing of enzymatic activity until protein resynthesis can occur, along with the potential for increased selectivity by targeting uniquely positioned nucleophilic residues in the protein. However, covalent approaches carry additional risk for toxicities or hypersensitivity reactions that can result from covalent modification of unintended targets. Here we describe methods for measuring the reactivity of covalent reactive groups (CRGs) with a biologically relevant nucleophile, glutathione (GSH), along with kinetic data for a broad array of electrophiles. We also describe a computational method for predicting electrophilic reactivity, which taken together can be applied to the prospective design of thiol-reactive covalent inhibitors.
Assuntos
Inibidores Enzimáticos/química , Glutationa/química , Desenho de Fármacos , Glutationa/metabolismo , Humanos , Cinética , Espectrometria de Massas , Ressonância Magnética Nuclear Biomolecular , Preparações Farmacêuticas/químicaRESUMO
Despite concerns of off-target selectivity and cytotoxicity, there has been a resurgence in interest in irreversible kinase inhibitors resulting in more than 60 disclosed patent and patent applications over the past 4 years. Many of these inhibitors possess several key advantages over their reversible counterparts. The patent literature from 2010 to 2013 has been reviewed and novel irreversible kinase inhibitors for Bruton's tyrosine kinase, epidermal growth factor receptor, Janus kinase 3, phosphoinsitide 3 and other kinases are disclosed and discussed. These inhibitors offer novel treatments for mantle cell lymphoma, non-small-cell lung cancer, autoimmune disorders and severe metastatic cancers. A future perspective is presented on the likelihood of clinical success of these agents as well as the potential for new uses of irreversible kinase inhibitors in the future.
Assuntos
Doenças Autoimunes/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/antagonistas & inibidores , Janus Quinase 3/antagonistas & inibidores , Linfoma de Célula do Manto/tratamento farmacológico , Metástase Neoplásica/tratamento farmacológico , Patentes como Assunto , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Tirosina Quinases/antagonistas & inibidores , Tirosina Quinase da Agamaglobulinemia , Artrite Reumatoide/tratamento farmacológico , Rejeição de Enxerto/tratamento farmacológico , Humanos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Linfoma de Células B/tratamento farmacológicoRESUMO
Kinases are principal components of signal transduction pathways and the focus of intense basic and drug discovery research. Irreversible inhibitors that covalently modify non-catalytic cysteines in kinase active sites have emerged as valuable probes and approved drugs. Many protein classes, however, have functional cysteines, and therefore understanding the proteome-wide selectivity of covalent kinase inhibitors is imperative. Here, we accomplish this objective using activity-based protein profiling coupled with quantitative MS to globally map the targets, both specific and nonspecific, of covalent kinase inhibitors in human cells. Many of the specific off-targets represent nonkinase proteins that, notably, have conserved active site cysteines. We define windows of selectivity for covalent kinase inhibitors and show that, when these windows are exceeded, rampant proteome-wide reactivity and kinase target-independent cell death conjointly occur. Our findings, taken together, provide an experimental road map to illuminate opportunities and surmount challenges for the development of covalent kinase inhibitors.
Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteoma/genética , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisteína/química , Genes erbB-1/genética , Humanos , Cinética , Piperidinas , Proteínas Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genéticaRESUMO
We present a novel series of selective androgen receptor modulators (SARMs) which shows excellent biological activity and physical properties. 1-(2-Hydroxy-2-methyl-3-phenoxypropanoyl)-indoline-4-carbonitriles showed potent binding to the androgen receptor (AR) and activated AR-mediated transcription in vitro. Representative compounds demonstrated diminished activity in promoting the intramolecular interaction between the AR carboxyl (C) and amino (N) termini. This N/C-termini interaction is a biomarker assay for the undesired androgenic responses in vivo. In orchidectomized rats, daily administration of a lead compound from this series showed anabolic activity by increasing levator ani muscle weight. Importantly, minimal androgenic effects (increased tissue weights) were observed in the prostate and seminal vesicles, along with minimal repression of circulating luteinizing hormone (LH) levels and no change in the lipid and triglyceride levels. This lead compound completed a two week rat toxicology study, and was well tolerated at doses up to 100 mg/kg/day, the highest dose tested, for 14 consecutive days.