Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Oncoimmunology ; 7(11): e1507668, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30377570

RESUMO

Efforts to reduce immunosuppression in the solid tumor microenvironment by blocking the recruitment or polarization of tumor associated macrophages (TAM), or myeloid derived suppressor cells (MDSCs), have gained momentum in recent years. Expanding our knowledge of the immune cell types, cytokines, or recruitment factors that are associated with high-grade disease, both within the tumor and in circulation, is critical to identifying novel targets for immunotherapy. Furthermore, a better understanding of how therapeutic regimens, such as Dexamethasone (Dex), chemotherapy, and radiation, impact these factors will facilitate the design of therapies that can be targeted to the appropriate populations and retain efficacy when administered in combination with standard of care regimens. Here we perform quantitative analysis of tissue microarrays made of samples taken from grades I-III astrocytoma and glioblastoma (GBM, grade IV astrocytoma) to evaluate infiltration of myeloid markers CD163, CD68, CD33, and S100A9. Serum, flow cytometric, and Nanostring analysis allowed us to further elucidate the impact of Dex treatment on systemic biomarkers, circulating cells, and functional markers within tumor tissue. We found that common myeloid markers were elevated in Dex-treated grade I astrocytoma and GBM compared to non-neoplastic brain tissue and grade II-III astrocytomas. Cell frequencies in these samples differed significantly from those in Dex-naïve patients in a pattern that depended on tumor grade. In contrast, observed changes in serum chemokines or circulating monocytes were independent of disease state and were due to Dex treatment alone. Furthermore, these changes seen in blood were often not reflected within the tumor tissue. Conclusions: Our findings highlight the importance of considering perioperative treatment as well as disease grade when assessing novel therapeutic targets or biomarkers of disease.

2.
Cell Immunol ; 323: 49-58, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29103587

RESUMO

Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells critical in mediating immune suppression in cancer patients. To develop an in vitro assay system that functionally mimics the tumor microenvironment, we cultured human monocytes with conditioned media from several cancer cell lines. Conditioned media from five tumor cell lines induced survival and differentiation of monocytes into cells characteristically similar to macrophages and MDSCs. Notably, media from the 786.O renal cell carcinoma line induced monocytes to acquire a monocytic MDSC phenotype characterized by decreased HLA-DR expression, increased nitric oxide production, enhanced proliferation, and ability to suppress autologous CD3+ T cell proliferation. We further demonstrated that these in vitro MDSCs are phenotypically and functionally similar to patient-derived MDSCs. Inhibitors of STAT3, CK2, and GM-CSF resulted in partial reversal of the MDSC phenotype. MDSCs generated in vitro from 786.O tumor conditioned media represent a platform to identify potential therapeutics that inhibit MDSC activities.


Assuntos
Carcinoma de Células Renais/metabolismo , Técnicas de Cocultura/métodos , Monócitos/efeitos dos fármacos , Células Supressoras Mieloides/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Meios de Cultivo Condicionados , Humanos , Ativação Linfocitária , Modelos Biológicos , Monócitos/citologia , Monócitos/imunologia , Células Mieloides/citologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Supressoras Mieloides/citologia , Células Supressoras Mieloides/imunologia , Fenótipo , Microambiente Tumoral/fisiologia
3.
Int J Cancer ; 134(4): 778-88, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23929039

RESUMO

Cirrhosis is the primary risk factor for the development of hepatocellular carcinoma (HCC), yet the mechanisms by which cirrhosis predisposes to carcinogenesis are poorly understood. Using a mouse model that recapitulates many aspects of the pathophysiology of human liver disease, we explored the mechanisms by which changes in the liver microenvironment induce dysplasia and HCC. Hepatic expression of platelet-derived growth factor C (PDGF-C) induces progressive fibrosis, chronic inflammation, neoangiogenesis and sinusoidal congestion, as well as global changes in gene expression. Using reporter mice, immunofluorescence, immunohistochemistry and liver cell isolation, we demonstrate that receptors for PDGF-CC are localized on hepatic stellate cells (HSCs), which proliferate, and transform into myofibroblast-like cells that deposit extracellular matrix and lead to production of growth factors and cytokines. We demonstrate induction of cytokine genes at 2 months, and stromal cell-derived hepatocyte growth factors that coincide with the onset of dysplasia at 4 months. Our results support a paracrine signaling model wherein hepatocyte-derived PDGF-C stimulates widespread HSC activation throughout the liver leading to chronic inflammation, liver injury and architectural changes. These complex changes to the liver microenvironment precede the development of HCC. Further, increased PDGF-CC levels were observed in livers of patients with nonalcoholic fatty steatohepatitis and correlate with the stage of disease, suggesting a role for this growth factor in chronic liver disease in humans. PDGF-C transgenic mice provide a unique model for the in vivo study of tumor-stromal interactions in the liver.


Assuntos
Carcinoma Hepatocelular/patologia , Fígado Gorduroso/patologia , Células Estreladas do Fígado/patologia , Neoplasias Hepáticas/patologia , Linfocinas/metabolismo , Comunicação Parácrina , Fator de Crescimento Derivado de Plaquetas/metabolismo , Células Estromais/patologia , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Western Blotting , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Estudos de Coortes , Citocinas/genética , Citocinas/metabolismo , Fígado Gorduroso/genética , Fígado Gorduroso/metabolismo , Imunofluorescência , Perfilação da Expressão Gênica , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Técnicas Imunoenzimáticas , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Linfocinas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica , Análise de Sequência com Séries de Oligonucleotídeos , Fator de Crescimento Derivado de Plaquetas/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Células Estromais/metabolismo
4.
Biochim Biophys Acta ; 1842(2): 318-25, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24269585

RESUMO

Platelet-derived growth factors (PDGFs) are critical for development; their over-expression is associated with fibrogenesis. Full-length PDGF-C is secreted as an inactive dimer, requiring cleavage to allow receptor binding. Previous studies indicate that tissue-type plasminogen activator (tPA) is the specific protease that performs this cleavage; in vivo confirmation is lacking. We demonstrate that primary hepatocytes from tpa KO mice produce less cleaved active PDGF-CC than do wild type hepatocytes, suggesting that tPA is critical for in vitro activation of this growth factor. We developed mice that over-express full-length human PDGF-C in the liver; these mice develop progressive liver fibrosis. To test whether tPA is important for cleavage and activation of PDGF-C in vivo, we intercrossed PDGF-C transgenic (Tg) and tpa knock-out (KO) mice, anticipating that lack of tPA would result in decreased fibrosis due to lack of hPDGF-C cleavage. To measure levels of cleaved, dimerized PDGF-CC in sera, we developed an ELISA that specifically detects cleaved PDGF-CC. We report that the absence of tpa does not affect the phenotype of `PDGF-C Tg mice. PDGF-C Tg mice lacking tPA have high serum levels of cleaved growth factor, significant liver fibrosis, and gene expression alterations similar to those of PDGF-C Tg mice with intact tPA. Furthermore, urokinase plasminogen activator and plasminogen activator inhibitor-1 expression are increased in PDGF-C Tg; tpa KO mice. Our ELISA data suggest a difference between in vitro and in vivo activation of this growth factor, and our mouse model confirms that multiple proteases cleave and activate PDGF-C in vivo.


Assuntos
Hepatócitos/metabolismo , Cirrose Hepática/genética , Linfocinas/genética , Fator de Crescimento Derivado de Plaquetas/genética , Ativador de Plasminogênio Tecidual/genética , Animais , Células Cultivadas , Ensaio de Imunoadsorção Enzimática , Perfilação da Expressão Gênica , Hepatócitos/citologia , Humanos , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Linfocinas/sangue , Linfocinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Inibidor 1 de Ativador de Plasminogênio/genética , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Proteólise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ativador de Plasminogênio Tecidual/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/genética , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
5.
MAbs ; 2(1): 20-34, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20065654

RESUMO

Targeting angiogenesis is a promising approach to the treatment of solid tumors and age-related macular degeneration (AMD). Inhibition of vascularization has been validated by the successful marketing of monoclonal antibodies (mAbs) that target specific growth factors or their receptors, but there is considerable room for improvement in existing therapies. Combination of mAbs targeting both the VEGF and PDGF pathways has the potential to increase the efficacy of anti-angiogenic therapy without the accompanying toxicities of tyrosine kinase inhibitors and the inability to combine efficiently with traditional chemotherapeutics. However, development costs and regulatory issues have limited the use of combinatorial approaches for the generation of more efficacious treatments. The concept of mediating disease pathology by targeting two antigens with one therapeutic was proposed over two decades ago. While mAbs are particularly suitable candidates for a dual-targeting approach, engineering bispecificity into one molecule can be difficult due to issues with expression and stability, which play a significant role in manufacturability. Here, we address these issues upstream in the process of developing a bispecific antibody (bsAb). Single-chain antibody fragments (scFvs) targeting PDGFRbeta and VEGF-A were selected for superior stability. The scFvs were fused to both termini of human Fc to generate a bispecific, tetravalent molecule. The resulting molecule displays potent activity, binds both targets simultaneously, and is stable in serum. The assembly of a bsAb using stable monomeric units allowed development of an anti-PDGFRB/VEGF-A antibody capable of attenuating angiogenesis through two distinct pathways and represents an efficient method for rapid engineering of dual-targeting molecules.


Assuntos
Inibidores da Angiogênese/farmacologia , Anticorpos Biespecíficos/farmacologia , Imunoterapia , Neoplasias Experimentais/tratamento farmacológico , Proteínas Recombinantes de Fusão/metabolismo , Anticorpos de Cadeia Única/metabolismo , Sequência de Aminoácidos , Inibidores da Angiogênese/administração & dosagem , Animais , Anticorpos Biespecíficos/administração & dosagem , Linhagem Celular Tumoral , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Feminino , Humanos , Camundongos , Camundongos SCID , Dados de Sequência Molecular , Neoplasias Experimentais/imunologia , Neovascularização Fisiológica/efeitos dos fármacos , Ligação Proteica , Engenharia de Proteínas , Estabilidade Proteica , Receptor beta de Fator de Crescimento Derivado de Plaquetas/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Carga Tumoral/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/imunologia
6.
Protein Eng Des Sel ; 23(3): 115-27, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20022918

RESUMO

Bispecific antibodies (bsAbs) present an attractive opportunity to combine the additive and potentially synergistic effects exhibited by combinations of monoclonal antibodies (mAbs). Current challenges for engineering bsAbs include retention of the binding affinity of the parent mAb or antibody fragment, the ability to bind both targets simultaneously, and matching valency with biology. Other factors to consider include structural stability and expression of the recombinant molecule, both of which may have significant impact on its development as a therapeutic. Here, we incorporate selection of stable, potent single-chain variable fragments (scFvs) early in the engineering process to assemble bsAbs for therapeutic applications targeting the cytokines IL-17A/A and IL-23. Stable scFvs directed against human cytokines IL-23p19 and IL-17A/A were isolated from a human Fab phage display library via batch conversion of panning output from Fabs to scFvs. This strategy integrated a step for shuffling V regions during the conversion and permitted the rescue of scFv molecules in both the V(H)V(L) and the V(L)V(H) orientations. Stable scFvs were identified and assembled into several bispecific formats as fusions to the Fc domain of human IgG1. The engineered bsAbs are potent neutralizers of the biological activity of both cytokines (IC(50) < 1 nM), demonstrate the ability to bind both target ligands simultaneously and display stability and productivity advantageous for successful manufacture of a therapeutic molecule. Pharmacokinetic analysis of the bsAbs in mice revealed serum half-lives similar to human mAbs. Assembly of bispecific molecules using stable antibody fragments offers an alternative to reformatting mAbs and minimizes subsequent structure-related and manufacturing concerns.


Assuntos
Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/imunologia , Interleucina-17/imunologia , Interleucina-23/imunologia , Engenharia de Proteínas , Animais , Anticorpos Biespecíficos/química , Anticorpos Biespecíficos/farmacocinética , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Afinidade de Anticorpos , Bases de Dados de Proteínas , Escherichia coli/genética , Feminino , Meia-Vida , Humanos , Cinética , Camundongos , Estabilidade Proteica , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/metabolismo
7.
Hum Pathol ; 39(3): 393-402, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18187181

RESUMO

Chronic allograft nephropathy (CAN), a descriptive term denoting chronic scarring injury of the renal parenchyma and vasculature in allograft kidneys arising from various etiologies including chronic rejection, is the most common cause of late allograft failure, but mediators of this progressive injury largely remain unknown. We hypothesized that platelet-derived growth factor D (PDGF-D) and its specific receptor PDGF-Rbeta may be an important mediator in the pathogenesis of CAN and, hence, sought to identify its expression in this setting. Allograft nephrectomies demonstrating CAN, obtained from patients with irreversible transplant kidney failure (n = 15), were compared with renal tissues without prominent histopathological abnormalities (n = 18) and a series of renal allograft biopsies demonstrating acute vascular rejection (AVR) (n = 12). Antibodies to PDGF-D and PDGF-Rbeta were used for immunohistochemistry. Double and triple immunohistochemistry was used to identify cell types expressing PDGF-D. PDGF-D was widely expressed in most neointimas in arteries exhibiting the chronic arteriopathy of CAN and only weakly expressed in a small proportion of sclerotic arteries in the other 2 groups. Double and triple immunolabeling demonstrated that the neointimal cells expressing PDGF-D were alpha-smooth muscle actin-expressing cells, but not infiltrating macrophages or endothelial cells. PDGF-Rbeta expression evaluated in serial sections was localized to the same sites where neointimal PDGF-D was expressed. PDGF-Rbeta was expressed in interstitial cells more abundantly in the CAN group compared with the normal and AVR groups, without demonstrable colocalization of PDGF-D. PDGF-D is present in the neointima of the arteriopathy of CAN, where it can engage PDGF-Rbeta to promote mesenchymal cell migration, proliferation, and neointima formation. PDGF-D may engage the PDGF-Rbeta to promote interstitial injury in chronic allograft injury, but its sources within the interstitium were unidentified.


Assuntos
Rejeição de Enxerto/metabolismo , Nefropatias/metabolismo , Transplante de Rim , Linfocinas/biossíntese , Fator de Crescimento Derivado de Plaquetas/biossíntese , Rejeição de Enxerto/patologia , Humanos , Imuno-Histoquímica , Nefropatias/patologia , Músculo Liso Vascular/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/biossíntese , Artéria Renal/metabolismo , Artéria Renal/patologia , Transplante Homólogo
8.
Differentiation ; 75(9): 843-52, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17999742

RESUMO

Non-invasive therapies for the treatment of hepatocellular carcinoma (HCC) would be of great benefit to public health. To this end, we have developed a platelet-derived growth factor-C (PDGF-C) transgenic (Tg) mouse model, which mimics many aspects of human liver carcinogenesis. Specifically, overexpression of PDGF-C results in liver fibrosis, which is preceded by activation and proliferation of hepatic stellate cells, and is followed by the development of dysplastic lesions and angiogenesis, and progression to HCCs by 8 months of age. Here, we show that PDGF-C overexpression induces the proliferation of endothelial-like cells that are present in tumors and adjacent non-neoplastic parenchyma. The protein tyrosine kinase inhibitor, imatinib (Gleevec), decreases the proliferation of non-parenchymal cells (NPC) in vitro and in vivo, with concomitant inhibition of Akt. In vivo treatment with imatinib also blocks the expression of CD34 in PDGF-C Tg mice. Decreased NPC proliferation and CD34 expression correlated with lower levels of active ERK1/2 and total levels of PDGF receptor alpha (PDGFRalpha). In summary, the small molecule inhibitor imatinib attenuates stromal cell proliferation in PDGF-C-induced HCC, which coincides with decreased expression of both CD34 and PDGFRalpha, and activated Akt. Our findings suggest that imatinib may be efficacious in the treatment of hepatocarcinogenesis, particularly when neovascularization is present.


Assuntos
Antígenos CD34/metabolismo , Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Neoplasias Hepáticas/tratamento farmacológico , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/farmacologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Animais , Antineoplásicos/uso terapêutico , Benzamidas , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Mesilato de Imatinib , Cirrose Hepática/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Linfocinas/genética , Camundongos , Camundongos Transgênicos , Proteína Quinase 1 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Piperazinas/uso terapêutico , Fator de Crescimento Derivado de Plaquetas/genética , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Pirimidinas/uso terapêutico , Ratos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Células Estromais/efeitos dos fármacos , Células Estromais/metabolismo , Células Estromais/patologia
9.
Proc Natl Acad Sci U S A ; 102(9): 3389-94, 2005 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-15728360

RESUMO

Members of the platelet-derived growth factor (PDGF) ligand family are known to play important roles in wound healing and fibrotic disease. We show that both transient and stable expression of PDGF-C results in the development of liver fibrosis consisting of the deposition of collagen in a pericellular and perivenular pattern that resembles human alcoholic and nonalcoholic fatty liver disease. Fibrosis in PDGF-C transgenic mice, as demonstrated by staining and hydroxyproline content, is preceded by activation and proliferation of hepatic stellate cells, as shown by collagen, alpha-smooth muscle actin and glial fibrillary acidic protein staining and between 8 and 12 months of age is followed by the development of liver adenomas and hepatocellular carcinomas. The hepatic expression of a number of known profibrotic genes, including type beta1 TGF, PDGF receptors alpha and beta, and tissue inhibitors of matrix metalloproteinases-1 and -2, increased by 4 weeks of age. Increased PDGF receptor alpha and beta protein levels were associated with activation of extracellular regulated kinase-1 and -2 and protein kinase B. At 9 months of age, PDGF-C transgenic mice had enlarged livers associated with increased fibrosis, steatosis, cell dysplasia, and hepatocellular carcinomas. These studies indicate that hepatic expression of PDGF-C induces a number of profibrotic pathways, suggesting that this growth factor may act as an initiator of fibrosis. Moreover, PDGF-C transgenic mice represent a unique model for the study of hepatic fibrosis progressing to tumorigenesis.


Assuntos
Carcinoma Hepatocelular/etiologia , Fígado Gorduroso/etiologia , Cirrose Hepática/etiologia , Neoplasias Hepáticas/etiologia , Fator de Crescimento Derivado de Plaquetas/fisiologia , Animais , Carcinoma Hepatocelular/patologia , Fígado Gorduroso/patologia , Humanos , Imuno-Histoquímica , Cirrose Hepática/genética , Cirrose Hepática/patologia , Neoplasias Hepáticas/patologia , Linfocinas , Camundongos , Camundongos Transgênicos , Fator de Crescimento Derivado de Plaquetas/metabolismo
10.
J Am Soc Nephrol ; 15(2): 286-98, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14747375

RESUMO

The PDGF family consists of at least four members, PDGF-A, -B, -C, and -D. All of the PDGF isoforms bind and signal through two known receptors, PDGF receptor-alpha and PDGF receptor-beta, which are constitutively expressed in the kidney and are upregulated in specific diseases. It is well established that PDGF-B plays a pivotal role in the mediation of glomerular mesangial cell proliferation. However, little is known of the roles of the recently discovered PDGF-C and -D in mediating renal injury. In this study, adenovirus constructs encoding PDGF-B, -C, and -D were injected into mice. Mice with high circulating levels of PDGF-D developed a severe mesangial proliferative glomerulopathy, characterized by enlarged glomeruli and a striking increase in glomerular cellularity. The PDGF-B-overexpressing mice had a milder proliferative glomerulopathy, whereas the mice overexpressing PDGF-C and those that received adenovirus alone showed no measurable response. Mitogenicity of PDGF-D and -B for mesangial cells was confirmed in vitro. These findings emphasize the importance of engagement of PDGF receptor-beta in transducing mesangial cell proliferation and demonstrate that PDGF-D is a major mediator of mesangial cell proliferation. Finally, this approach has resulted in a unique and potentially valuable model of mesangial proliferative glomerulopathy and its resolution.


Assuntos
Mesângio Glomerular/citologia , Mesângio Glomerular/efeitos dos fármacos , Glomerulonefrite Membranosa/induzido quimicamente , Linfocinas/farmacologia , Mitógenos/farmacologia , Fator de Crescimento Derivado de Plaquetas/farmacologia , Animais , Feminino , Linfocinas/biossíntese , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Derivado de Plaquetas/biossíntese , Índice de Gravidade de Doença , Fatores de Tempo
11.
J Am Soc Nephrol ; 14(10): 2544-55, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14514732

RESUMO

Tubulointerstitial fibrosis is a major characteristic of progressive renal diseases. Platelet-derived growth factor (PDGF) is a family of growth regulatory molecules consisting of PDGF-A and -B, along with the newly discovered PDGF-C and -D. They signal through cell membrane receptors, PDGF receptor alpha (PDGF-Ralpha) and receptor beta (PDGF-Rbeta). Involvement of PDGF-B and PDGF-Rbeta in the initiation and progression of renal fibrosis has been well documented. The authors studied the localization of PDGF ligands and receptors by immunohistochemistry, with emphasis on the role of PDGF-D in murine renal fibrosis induced by unilateral ureteral obstruction (UUO). In mice with UUO, de novo expression of PDGF-D was detected in interstitial cells at day 4, which increased to maximal expression at day 14. Increased expression of PDGF-B by interstitial cells and in some tubules was observed after day 4. The diseased mice did not show augmentation of PDGF-A or PDGF-C proteins in the areas of fibrosis. PDGF-Ralpha and -Rbeta protein expression was increased in interstitial cells after day 4 and reached maximal expression at day 14. Human renal nephrectomies (n = 10) of chronic obstructive nephropathy demonstrated similar de novo expression of PDGF-D in interstitial cells, correlating with expression of PDGF-Rbeta and PDGF-B, as it did in the murine model. These observations suggest that PDGF-D plays an important role in the pathogenesis of tubulointerstitial injury through binding of PDGF-Rbeta in both human obstructive nephropathy and the corresponding murine model of UUO.


Assuntos
Linfocinas/metabolismo , Nefrite Intersticial/metabolismo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Obstrução Ureteral/metabolismo , Actinas/metabolismo , Animais , Capilares/metabolismo , Divisão Celular , Colágeno Tipo I/metabolismo , Progressão da Doença , Fibroblastos/metabolismo , Fibroblastos/patologia , Fibrose , Mesângio Glomerular/irrigação sanguínea , Mesângio Glomerular/metabolismo , Mesângio Glomerular/patologia , Humanos , Masculino , Camundongos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Receptor beta de Fator de Crescimento Derivado de Plaquetas/metabolismo , Regulação para Cima , Obstrução Ureteral/patologia
12.
Kidney Int ; 62(6): 2043-54, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12427128

RESUMO

BACKGROUND: Platelet-derived growth factor (PDGF) is a family of growth regulatory molecules composed of sulfide-bonded dimeric structures. Two well-studied PDGF peptides (PDGF-A and PDGF-B) have been shown to mediate a wide range of biological effects. PDGF-D is a newly recognized member of the PDGF family. Initial studies of the PDGF-D gene found its expression in cells of the vascular wall, suggesting that it could participate in vascular development and pathology. However, its localization in human kidney tissues has never been studied. METHODS: PDGF-D expression in fetal (N = 30) and adult (N = 25) human kidney tissues was examined by immunohistochemistry using an affinity-purified antibody raised to human PDGF-D. Antibody absorption with the immunizing peptide was employed to confirm the specificity of this antibody. PDGF-D protein and gene expression in human kidneys also were demonstrated by Western blotting and reverse transcription-polymerase chain reaction (RT-PCR). RESULTS: In the developing kidney, PDGF-D was first expressed by epithelial cells of comma- and S-shaped structures of the developing nephron, and most consistently in the visceral epithelial cells in the later stages of glomerular differentiation. In addition, PDGF-D could be found in mesenchymal, presumptively fibroblast cells in the interstitium of developing renal pelvis and in fetal smooth muscle cells in arterial vessels. In the adult normal kidney, PDGF-D was expressed by the visceral epithelial cells. There was persistent expression in arterial smooth muscle cells as well as in some neointimal smooth muscle cells of arteriosclerotic vessels, and expression in smooth muscle cells of vasa rectae in the medulla. PDGF-D could be identified at the basolateral membrane of some injured tubules in areas of chronic tubulointerstitial injury routinely encountered in aging kidneys. Western blotting of homogenates of adult kidneys demonstrated monospecific bands at 50 kD corresponding to previously established size parameter for this protein. RT-PCR of human kidney RNA resulted in a 918 basepair band, the sequence of which corresponded to human PDGF-D (Genbank number AF336376). CONCLUSIONS: To our knowledge, these are the first studies to localize PDGF-D in human kidneys and suggest that PDGF-D may have a role in kidney development. PDGF-D was shown to bind to PDGF beta receptor, which localizes to mesangial cells, parietal epithelial cells, and interstitial fibroblasts, suggesting potential paracrine interactions between those cells and the visceral epithelium.


Assuntos
Rim/química , Rim/embriologia , Linfocinas , Fator de Crescimento Derivado de Plaquetas/análise , Adulto , Especificidade de Anticorpos , Western Blotting , Feto/química , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Imuno-Histoquímica , Rim/fisiologia , Dados de Sequência Molecular , Fator de Crescimento Derivado de Plaquetas/genética , Fator de Crescimento Derivado de Plaquetas/imunologia , RNA Mensageiro/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA