RESUMO
The aerosol and precipitable water vapor (PW) distribution over the tropical Andes region is characterized using Aerosol Robotic Network (AERONET) observations at stations in Medellin (Colombia), Quito (Ecuador), Huancayo (Peru), and La Paz (Bolivia). AERONET aerosol optical depth (AOD) is interpreted using PM2.5 data when available. Columnar water vapor derived from ozone soundings at Quito is used to compare against AERONET PW. MERRA-2 data are used to complement analyses. Urban pollution and biomass burning smoke (BBS) dominate the regional aerosol composition. AOD and PM2.5 yearly cycles for coincident measurements correlate linearly at Medellin and Quito. The Andes cordillera's orientation and elevation funnel or block BBS transport into valleys or highlands during the two fire seasons that systematically impact South America. The February-March season north of Colombia and the Colombian-Venezuelan border directly impacts Medellin. Possibly, the March aerosol signal over Quito has a long-range transport component. At Huancayo and La Paz, AOD increases in September due to the influence of BBS in the Amazon. AERONET PW and sounding data correlate linearly but a dry bias with respect to soundings was identified in AERONET. PW and rainfall progressively decrease from north to south due to increasing altitude. This regional diagnosis is an underlying basis to evaluate future changes in aerosol and PW given prevailing conditions of rapidly changing atmospheric composition.
RESUMO
We introduce and evaluate an approach for the simultaneous retrieval of aerosol and surface properties from Airborne Visible/Infrared Imaging Spectrometer Classic (AVIRIS-C) data collected during wildfires. The joint National Aeronautics and Space Administration (NASA) National Oceanic and Atmospheric Administration Fire Influence on Regional to Global Environments and Air Quality field campaign took place in August 2019, and involved two aircraft and coordinated ground-based observations. The AVIRIS-C instrument acquired data from onboard NASA's high altitude ER-2 research aircraft, coincident in space and time with aerosol observations obtained from the Aerosol Robotic Network (AERONET) DRAGON mobile platform in the smoke plume downwind of the Williams Flats Fire in northern Washington in August 2019. Observations in this smoke plume were used to assess the capacity of optimal-estimation based retrievals to simultaneously estimate aerosol optical depth (AOD) and surface reflectance from Visible Shortwave Infrared (VSWIR) imaging spectroscopy. Radiative transfer modeling of the sensitivities in spectral information collected over smoke reveal the potential capacity of high spectral resolution retrievals to distinguish between sulfate and smoke aerosol models, as well as sensitivity to the aerosol size distribution. Comparison with ground-based AERONET observations demonstrates that AVIRIS-C retrievals of AOD compare favorably with direct sun AOD measurements. Our analyses suggest that spectral information collected from the full VSWIR spectral interval, not just the shortest wavelengths, enables accurate retrievals. We use this approach to continuously map both aerosols and surface reflectance at high spatial resolution across heterogeneous terrain, even under relatively high AOD conditions associated with wildfire smoke.
RESUMO
In the present study, we evaluated the pre-monsoon urban atmosphere (UA) aerosol characteristics remotely sensed by Aerosol Robotic Network (AERONET) over the Bengal Gangetic plain (BGP) at Kolkata (KOL) and their implication in potential source types and spatiotemporal features. About 70% of the AERONET-sensed aerosol optical depth at 0.50 µ m, AOD0.5 (Angstrom exponent, α at 0.44-0.87 µ m) during the pre-monsoon period (February to June) was greater than 0.50 (≤ 1); the pre-monsoon mean of AOD0.5 (α) was 0.73 (0.83) which was found being slightly higher (lower) than nearby AERONET stations (Dhaka/Bhola) located over the eastern Ganges basin. The volume geometric mean radius for the fine mode (FM) (coarse mode, CM) UA aerosol from AERONET retrievals was estimated to be 0.14-0.17 (2.24-2.75) µ m. The spectral distribution of the monthly mean of UA aerosol single-scattering albedo (SSA) exhibited an increasing trend with an increase in wavelength throughout all wavelengths during April, unlike the rest of the pre-monsoon months. Investigation of aerosol types indicated the pre-dominance of dust during April and a mixture of urban/open burning with mixed desert dust during the rest of the pre-monsoon months. Potential aerosol source fields were identified over the Indo-Gangetic Plain (IGP), east coast, northwestern India, and oceanic regions; these were estimated at elevated layers of atmosphere during April and May but that at surface layers during February and June. Comparison of aerosol characteristics over the BGP (at Kolkata, KOL) with that at six other coincident AERONET sites over India revealed mean AOD at KOL being 11 to 91% higher than the rest of the AERONET stations, with the relative increase at KOL being the highest during March; this was attributed to persistent high values of both FM and CM AOD unlike the rest of the stations. The monthly mean of SSA was the lowest at KOL among AERONET stations, during February and March. Comparison of the AOD from the AERONET aerosol retrievals over the BGP UA with the coincident Moderate Resolution Imaging Spectroradiometer (MODIS) latest retrievals (C005 and C006) indicated a moderate correlation between the two retrievals; discrepancy in MODIS-retrieved relative distribution of FM and CM AOD was inferred compared to AERONET in the UA.