Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(12)2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37371097

RESUMO

Genomic instability is a prominent hallmark of cancer, however the mechanisms that drive and sustain this process remain elusive. Research demonstrates that numerous cancers with increased levels of genomic instability ectopically express meiosis-specific genes and undergo meiomitosis, the clash of mitotic and meiotic processes. These meiotic genes may represent novel therapeutic targets for the treatment of cancer. We studied the relationship between the expression of the meiosis protein HORMAD1 and genomic instability in squamous cell carcinomas (SCCs). First, we assessed markers of DNA damage and genomic instability following knockdown and overexpression of HORMAD1 in different cell lines representing SCCs and epithelial cancers. shRNA-mediated depletion of HORMAD1 expression resulted in increased genomic instability, DNA damage, increased sensitivity to etoposide, and decreased expression of DNA damage response/repair genes. Conversely, overexpression of HORMAD1 exhibited protective effects leading to decreased DNA damage, enhanced survival and decreased sensitivity to etoposide. Furthermore, we identified a meiotic molecular pathway that regulates HORMAD1 expression by targeting the upstream meiosis transcription factor STRA8. Our results highlight a specific relationship between HORMAD1 and genomic instability in SCCs, suggesting that selectively inhibiting HORMAD1, possibly, through STRA8 signaling, may provide a new paradigm of treatment options for HORMAD1-expressing SCCs.


Assuntos
Carcinoma de Células Escamosas , Instabilidade Genômica , Humanos , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Dano ao DNA/genética , Reparo do DNA/genética , Etoposídeo/farmacologia , Instabilidade Genômica/genética , Meiose/genética , Mitose/genética
2.
Cancers (Basel) ; 14(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35892887

RESUMO

Keratinocyte carcinomas are among the most prevalent malignancies worldwide. Basal cell carcinoma (BCC) and cutaneous squamous cell carcinoma (cSCC) are the two cancers recognized as keratinocyte carcinomas. The standard of care for treating these cancers includes surgery and ablative therapies. However, in recent years, targeted therapies (e.g., cetuximab for cSCC and vismodegib/sonidegib for BCC) have been used to treat advanced disease as well as immunotherapy (e.g., cemiplimab). These treatments are expensive and have significant toxicities with objective response rates approaching ~50-65%. Hence, there is a need to dissect the molecular pathogenesis of these cancers to identify novel biomarkers and therapeutic targets to improve disease management. Several cancer-testis antigens (CTA) and developmental genes (including embryonic stem cell factors and fetal genes) are ectopically expressed in BCC and cSCC. When ectopically expressed in malignant tissues, functions of these genes may be recaptured to promote tumorigenesis. CTAs and developmental genes are emerging as important players in the pathogenesis of BCC and cSCC, positioning themselves as attractive candidate biomarkers and therapeutic targets requiring rigorous testing. Herein, we review the current research and offer perspectives on the contributions of CTAs and developmental genes to the pathogenesis of keratinocyte carcinomas.

3.
Cells ; 11(4)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35203244

RESUMO

Cutaneous T cell lymphoma (CTCL) is a spectrum of lymphoproliferative disorders caused by the infiltration of malignant T cells into the skin. The most common variants of CTCL include mycosis fungoides (MF), Sézary syndrome (SS) and CD30+ Lymphoproliferative disorders (CD30+ LPDs). CD30+ LPDs include primary cutaneous anaplastic large cell lymphoma (pcALCL), lymphomatoid papulosis (LyP) and borderline CD30+ LPD. The frequency of MF, SS and CD30+ LPDs is ~40-50%, <5% and ~10-25%, respectively. Despite recent advances, CTCL remains challenging to diagnose. The mechanism of CTCL carcinogenesis still remains to be fully elucidated. Hence, experiments in patient-derived cell lines and xenografts/genetically engineered mouse models (GEMMs) are critical to advance our understanding of disease pathogenesis. To enable this, understanding the intricacies and limitations of each individual model system is highly important. Presently, 11 immortalized patient-derived cell lines and different xenograft/GEMMs are being used to study the pathogenesis of CTCL and evaluate the therapeutic efficacy of various treatment modalities prior to clinical trials. Gene expression studies, and the karyotyping analyses of cell lines demonstrated that the molecular profile of SeAx, Sez4, SZ4, H9 and Hut78 is consistent with SS origin; MyLa and HH resemble the molecular profile of advanced MF, while Mac2A and PB2B represent CD30+ LPDs. Molecular analysis of the other two frequently used Human T-Cell Lymphotropic Virus-1 (HTLV-1)+ cell lines, MJ and Hut102, were found to have characteristics of Adult T-cell Leukemia/Lymphoma (ATLL). Studies in mouse models demonstrated that xenograft tumors could be grown using MyLa, HH, H9, Hut78, PB2B and SZ4 cells in NSG (NOD Scid gamma mouse) mice, while several additional experimental GEMMs were established to study the pathogenesis, effect of drugs and inflammatory cytokines in CTCL. The current review summarizes cell lines and xenograft/GEMMs used to study and understand the etiology and heterogeneity of CTCL.


Assuntos
Vírus Linfotrópico T Tipo 1 Humano , Linfoma Cutâneo de Células T , Papulose Linfomatoide , Micose Fungoide , Síndrome de Sézary , Neoplasias Cutâneas , Animais , Linhagem Celular , Xenoenxertos , Humanos , Antígeno Ki-1/análise , Linfoma Cutâneo de Células T/genética , Linfoma Cutâneo de Células T/patologia , Papulose Linfomatoide/genética , Papulose Linfomatoide/patologia , Papulose Linfomatoide/terapia , Camundongos , Micose Fungoide/patologia , Síndrome de Sézary/patologia , Neoplasias Cutâneas/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA