Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Metab Eng ; 13(6): 682-93, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21963485

RESUMO

Metabolic profiling of new drugs is limited by the difficulty in obtaining sufficient quantities of minor metabolites for definitive structural identification. Biocatalytic methods offer the potential to produce metabolites that are difficult to synthesize by traditional medicinal chemistry. We hypothesized that the regioselectivity of the drug metabolizing cytochrome P450s could be altered by directed evolution to produce minor metabolites of drugs in development. A biocatalyst library was constructed by DNA shuffling of four CYP3A forms. The library contained 11 ± 4 (mean ± SD) recombinations and 1 ± 1 spontaneous mutations per mutant. On expression in Escherichia coli, 96% of mutants showed detectable activity to at least one probe substrate. Using testosterone as a model drug-like substrate, mutants were found that preferentially formed metabolites produced in only trace amounts by parental forms. A single 1.6L batch culture of one such mutant enabled the facile isolation of 0.3mg of the minor metabolite 1ß-hydroxytestosterone and its ab initio structural determination by 1D- and 2D-NMR spectroscopy.


Assuntos
Citocromo P-450 CYP3A/metabolismo , Descoberta de Drogas/métodos , Citocromo P-450 CYP3A/genética , Embaralhamento de DNA , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Biblioteca Gênica , Hidroxitestosteronas/metabolismo , Especificidade por Substrato , Testosterona/metabolismo
2.
Phytother Res ; 24(8): 1195-201, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20135639

RESUMO

Echinacea preparations are used for the treatment and prevention of upper respiratory tract infections. The phytochemicals believed responsible for the immunomodulatory properties are the alkylamides found in ethanolic extracts, with one of the most abundant being the N-isobutyldodeca-2E,4E,8Z,10Z-tetraenamide (1). In this study, we evaluated the human cytochrome P450 enzymes involved in the metabolism of this alkylamide using recombinant P450s, human liver microsomes and pure synthetic compound. Epoxidation, N-dealkylation and hydroxylation products were detected, with different relative amounts produced by recombinant P450s and microsomes. The major forms showing activity toward the metabolism of 1 were CYP1A1, CYP1A2 (both producing the same epoxide and N-dealkylation product), CYP2A13 (producing two epoxides), and CYP2D6 (producing two epoxides and an hydroxylated metabolite). Several other forms showed less activity. In incubations with human liver microsomes and selective inhibitors, CYP2E1 was found to be principally responsible for producing the dominant, hydroxylation product, whereas CYP2C9 was the principal source of the epoxides and CYP1A2 was responsible for the dealkylation product. In summary, in this study the relative impacts of the main human xenobiotic-metabolizing cytochrome P450s on the metabolism of a major Echinacea alkylamide have been established and the metabolites formed have been identified.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Echinacea/química , Microssomos Hepáticos/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Compostos de Epóxi/metabolismo , Humanos , Hidroxilação , Proteínas Recombinantes/metabolismo
3.
Xenobiotica ; 39(7): 495-507, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19534586

RESUMO

Amino terminal sequence modification of cytochrome P450 enzymes is often necessary to achieve expression in bacteria. The aim of this study was to examine the effect of such modifications on membrane integration and P450 activity. Forms that retained substantial N-terminal hydrophobic sequences remained unaffected by treatments to remove peripheral membrane proteins and were released only by detergent. Truncated P450s 2A13, 2C9 (delta 3-20), 2C19 (delta 3-20), 2D6 (DB11) and 2E1 remained principally membrane-bound, but some P450 was found in the soluble fraction and could be partially extracted by alkaline and high salt treatments. The subcellular localization of P450s 2C9 and 2C19 assessed by fluorescence microscopy mirrored the distribution between subcellular fractions. The MALLLAVFL modified forms of P450 2C9 YFP, P450 2C18 YFP and P450 2C19 YFP were found primarily at the periphery of the cells, whereas the truncated forms of P450 2C9 (delta 3-20) YFP and 2C19 (delta 3-20) YFP were observed at the periphery as well as inside the cells. N-terminal variants of P450s 2C9 and 2C19 showed altered kinetics towards form-selective substrates. Rates of diclofenac 4 -hydroxylation by P450 2C9 and luciferin H-EGE metabolism by P450 2C19 were higher for the MALLLAVFL-modified forms compared with the (delta 3-20) truncated forms despite supplementation of truncated form incubations with additional reductase. Thus, N-terminal sequence modifications changed the degree of membrane integration, potentially affecting subcellular localization, interactions with redox partners, and hence enzymatic activity.


Assuntos
Hidrocarboneto de Aril Hidroxilases/biossíntese , Membrana Celular/enzimologia , Proteínas Recombinantes/biossíntese , Sequência de Aminoácidos , Hidrocarboneto de Aril Hidroxilases/genética , Citocromo P-450 CYP2C19 , Citocromo P-450 CYP2C9 , Humanos , Proteínas Recombinantes/genética , Deleção de Sequência , Especificidade por Substrato/genética
4.
Chem Biol Interact ; 155(1-2): 62-70, 2005 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-15885678

RESUMO

Echinacea preparations are widely used herbal remedies for the prevention and treatment of colds. In this study we have investigated the metabolism by human liver microsomes of the alkylamide components from an Echinacea preparation as well as that of pure synthetic alkylamides. No significant degradation of alkylamides was evident in cytosolic fractions. Time- and NADPH-dependent degradation of alkylamides was observed in microsomal fractions suggesting they are metabolised by cytochrome P450 (P450) enzymes in human liver. There was a difference in the susceptibility of 2-ene and 2,4-diene pure synthetic alkylamides to microsomal degradation with (2E)-N-isobutylundeca-2-ene-8,10-diynamide (1) metabolised to only a tenth the extent of (2E,4E,8Z,10Z)-N-isobutyldodeca-2,4,8,10-tetraenamide (3) under identical incubation conditions. Markedly less degradation of 3 was evident in the mixture of alkylamides present in an ethanolic Echinacea extract, suggesting that metabolism by liver P450s was dependent both on their chemistry and the combination present in the incubation. Co-incubation of 1 with 3 at equimolar concentrations resulted in a significant decrease in the metabolism of 3 by liver microsomes. This inhibition by 1, which has a terminal alkyne moiety, was found to be time- and concentration-dependent, and due to a mechanism-based inactivation of the P450s. Alkylamide metabolites were detected and found to be the predicted epoxidation, hydroxylation and dealkylation products. These findings suggest that Echinacea may effect the P450-mediated metabolism of other concurrently ingested pharmaceuticals.


Assuntos
Amidas/metabolismo , Butilaminas/metabolismo , Echinacea/química , Microssomos Hepáticos/metabolismo , Amidas/química , Butilaminas/química , Cromatografia Líquida de Alta Pressão , Humanos , Microssomos Hepáticos/efeitos dos fármacos , Extratos Vegetais/metabolismo , Espectrometria de Massas por Ionização por Electrospray
5.
Chem Res Toxicol ; 18(10): 1611-8, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16533026

RESUMO

Tamoxifen is a known hepatocarcinogen in rats and is associated with an increased incidence of endometrial cancer in patients. One mechanism for these actions is via bioactivation, where reactive metabolites are generated that are capable of binding to DNA or protein. Several metabolites of tamoxifen have been identified that appear to predispose to adduct formation. These include alpha-hydroxytamoxifen, alpha,4-dihydroxytamoxifen, and alpha-hydroxy-N-desmethyltamoxifen. Previous studies have shown that cytochrome P450 (P450) enzymes play an important role in the biotransformation of tamoxifen. The aim of our work was to determine which P450 enzymes were capable of producing alpha-hydroxylated metabolites from tamoxifen. When tamoxifen (18 or 250 microM) was used as the substrate, P450 3A4, and to a lesser extent, P450 2D6, P450 2B6, P450 3A5, P450 2C9, and P450 2C19 all produced a metabolite with the same HPLC retention time as alpha-hydroxytamoxifen at either substrate concentration tested. This peak was well-separated from 4-hydroxy-N-desmethyltamoxifen, which eluted substantially later under the chromatographic conditions used. No alpha,4-dihydroxytamoxifen was detected in incubations with any of the forms with tamoxifen as substrate. However, when 4-hydroxytamoxifen (100 microM) was used as the substrate, P450 2B6, P450 3A4, P450 3A5, P450 1B1, P450 1A1, and P450 2D6 all produced detectable concentrations of alpha,4-dihydroxytamoxifen. These studies demonstrate that multiple human P450s, including forms found in the endometrium, may generate reactive metabolites in women undergoing tamoxifen therapy, which could subsequently play a role in the development of endometrial cancer.


Assuntos
Antineoplásicos Hormonais/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Tamoxifeno/análogos & derivados , Tamoxifeno/metabolismo , Hidrocarboneto de Aril Hidroxilases/metabolismo , Citocromo P-450 CYP2B6 , Citocromo P-450 CYP2C9 , Citocromo P-450 CYP3A , Humanos , Microssomos Hepáticos/metabolismo , Oxirredutases N-Desmetilantes/metabolismo , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA