Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Opt Soc Am A Opt Image Sci Vis ; 32(12): 2353-64, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26831389

RESUMO

In the framework of adaptive optics (AO) for astronomy, it is a common assumption to consider the atmospheric turbulent layers as "frozen flows" sliding according to the wind velocity profile. For this reason, having knowledge of such a velocity profile is beneficial in terms of AO control system performance. In this paper we show that it is possible to exploit the phase estimate from a Kalman filter running on an AO system in order to estimate wind velocity. This allows the update of the Kalman filter itself with such knowledge, making it adaptive. We have implemented such an adaptive controller based on the distributed version of the Kalman filter, for a realistic simulation of a multi-conjugate AO system with laser guide stars on a 30 m telescope. Simulation results show that this approach is effective and promising and the additional computational cost with respect to the distributed filter is negligible. Comparisons with a previously published slope detection and ranging wind profiler are made and the impact of turbulence profile quantization is assessed. One of the main findings of the paper is that all flavors of the adaptive distributed Kalman filter are impacted more significantly by turbulence profile quantization than the static minimum mean square estimator which does not incorporate wind profile information.

2.
J Opt Soc Am A Opt Image Sci Vis ; 30(5): 898-909, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23695321

RESUMO

This paper discusses the performance and cost of two computationally efficient Fourier-based tomographic wavefront reconstruction algorithms for wide-field laser guide star (LGS) adaptive optics (AO). The first algorithm is the iterative Fourier domain preconditioned conjugate gradient (FDPCG) algorithm developed by Yang et al. [Appl. Opt.45, 5281 (2006)], combined with pseudo-open-loop control (POLC). FDPCG's computational cost is proportional to N log(N), where N denotes the dimensionality of the tomography problem. The second algorithm is the distributed Kalman filter (DKF) developed by Massioni et al. [J. Opt. Soc. Am. A28, 2298 (2011)], which is a noniterative spatially invariant controller. When implemented in the Fourier domain, DKF's cost is also proportional to N log(N). Both algorithms are capable of estimating spatial frequency components of the residual phase beyond the wavefront sensor (WFS) cutoff frequency thanks to regularization, thereby reducing WFS spatial aliasing at the expense of more computations. We present performance and cost analyses for the LGS multiconjugate AO system under design for the Thirty Meter Telescope, as well as DKF's sensitivity to uncertainties in wind profile prior information. We found that, provided the wind profile is known to better than 10% wind speed accuracy and 20 deg wind direction accuracy, DKF, despite its spatial invariance assumptions, delivers a significantly reduced wavefront error compared to the static FDPCG minimum variance estimator combined with POLC. Due to its nonsequential nature and high degree of parallelism, DKF is particularly well suited for real-time implementation on inexpensive off-the-shelf graphics processing units.

3.
J Opt Soc Am A Opt Image Sci Vis ; 30(4): 604-15, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23595319

RESUMO

Laser-guide-star multiconjugate adaptive optics (MCAO) systems require natural guide stars (NGS) to measure tilt and tilt-anisoplanatism modes. Making optimal use of the limited number of photons coming from such, generally dim, sources is mandatory to obtain reasonable sky coverage, i.e., the probability of finding asterisms amenable to NGS wavefront (WF) sensing for a predefined WF error budget. This paper presents a Strehl-optimal (minimum residual variance) spatiotemporal reconstructor merging principles of modal atmospheric tomography and optimal stochastic control theory. Simulations of NFIRAOS, the first light MCAO system for the thirty-meter telescope, using ~500 typical NGS asterisms, show that the minimum-variance (MV) controller delivers outstanding results, in particular for cases with relatively dim stars (down to magnitude 22 in the H-band), for which low-temporal frame rates (as low as 16 Hz) are required to integrate enough flux. Over all the cases tested ~21 nm rms median improvement in WF error can be achieved with the MV compared to the current baseline, a type-II controller based on a double integrator. This means that for a given level of tolerable residual WF error, the sky coverage is increased by roughly 10%, a quite significant figure. The improvement goes up to more than 20% when compared with a traditional single-integrator controller.

4.
Appl Opt ; 51(31): 7443-58, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23128690

RESUMO

This paper discusses an innovative simulation model based approach for long exposure atmospheric point spread function (PSF) reconstruction in the context of laser guide star (LGS) multiconjugate adaptive optics (MCAO). The approach is inspired from the classical scheme developed by Véran et al. [J. Opt. Soc. Am. A14, 3057 (1997)] and Flicker et al. [Astron. Astrophys.400, 1199 (2003)] and reconstructs the long exposure optical transfer function (OTF), i.e., the Fourier transformed PSF, as a product of separate long-exposure tip/tilt removed and tip/tilt OTFs, each estimated by postprocessing system and simulation telemetry data. Sample enclosed energy results assessing reconstruction accuracy are presented for the Thirty Meter Telescope LGS MCAO system currently under design and show that percent level absolute and differential photometry over a 30 arcsec diameter field of view are achievable provided the simulation model faithfully represents the real system.

5.
Appl Opt ; 50(18): 3000-10, 2011 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-21691367

RESUMO

The scientific utility of laser-guide-star-based multiconjugate adaptive optics systems depends upon high sky coverage. Previously we reported a high-fidelity sky coverage analysis of an ad hoc split tomography control algorithm and a postprocessing simulation technique. In this paper, we present the performance of a newer minimum variance split tomography algorithm, and we show that it brings a median improvement at zenith of 21 nm rms optical path difference error over the ad hoc split tomography control algorithm for our system, the Narrow Field Infrared Adaptive Optics System for the Thirty Meter Telescope. In order to make the comparison, we also validated our previously developed sky coverage postprocessing software using an integrated simulation of both high- (laser guide star) and low-order (natural guide star) loops. A new term in the noise model is also identified that improves the performance of both algorithms by more properly regularizing the reconstructor.

6.
J Opt Soc Am A Opt Image Sci Vis ; 25(10): 2427-35, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18830320

RESUMO

Laser guide star (LGS) atmospheric tomography is described in the literature as integrated minimum-variance tomographic wavefront reconstruction from a concatenated wavefront-sensor measurement vector consisting of many high-order, tip/tilt (TT)-removed LGS measurements, supplemented by a few low-order natural guide star (NGS) components essential to estimating the TT and tilt anisoplanatism (TA) modes undetectable by the TT-removed LGS wavefront sensors (WFSs). The practical integration of these NGS WFS measurements into the tomography problem is the main subject of this paper. A split control architecture implementing two separate control loops driven independently by closed-loop LGS and NGS measurements is proposed in this context. Its performance is evaluated in extensive wave optics Monte Carlo simulations for the Thirty Meter Telescope (TMT) LGS multiconjugate adaptive optics (MCAO) system, against the delivered performance of the integrated control architecture. Three iterative algorithms are analyzed for atmospheric tomography in both cases: a previously proposed Fourier domain preconditioned conjugate gradient (FDPCG) algorithm, a simple conjugate gradient (CG) algorithm without preconditioning, and a novel layer-oriented block Gauss-Seidel conjugate gradient algorithm (BGS-CG). Provided that enough iterations are performed, all three algorithms yield essentially identical closed-loop residual RMS wavefront errors for both control architectures, with the caveat that a somewhat smaller number of iterations are required by the CG and BGS-CG algorithms for the split approach. These results demonstrate that the split control approach benefits from (i) a simpler formulation of minimum-variance atmospheric tomography allowing for algorithms with reduced computational complexity and cost (processing requirements), (ii) a simpler, more flexible control of the NGS-controlled modes, and (iii) a reduced coupling between the LGS- and NGS-controlled modes. Computation and memory requirements for all three algorithms are also given for the split control approach for the TMT LGS AO system and appear feasible in relation to the performance specifications of current hardware technology.

7.
Appl Opt ; 45(25): 6568-76, 2006 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16912797

RESUMO

We describe modeling and simulation results for the Thirty Meter Telescope on the degradation of sodium laser guide star Shack-Hartmann wavefront sensor measurement accuracy that will occur due to the spatial structure and temporal variations of the mesospheric sodium layer. By using a contiguous set of lidar measurements of the sodium profile, the performance of a standard centroid and of a more refined noise-optimal matched filter spot position estimation algorithm is analyzed and compared for a nominal mean signal level equal to 1000 photodetected electrons per subaperture per integration time, as a function of subaperture to laser launch telescope distance and CCD pixel readout noise. Both algorithms are compared in terms of their rms spot position estimation error due to noise, their associated wavefront error when implemented on the Thirty Meter Telescope facility adaptive optics system, their linear dynamic range, and their bias when detuned from the current sodium profile.

8.
Appl Opt ; 44(6): 993-1002, 2005 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-15751690

RESUMO

Recent progress has been made to compute efficiently the open-loop minimum-variance reconstructor (MVR) for multiconjugate adaptive optics systems by a combination of sparse matrix and iterative techniques. Using spectral analysis, I show that a closed-loop laser guide star multiconjugate adaptive optics control algorithm consisting of MVR cascaded with an integrator control law is unstable. Tosolve this problem, a computationally efficient pseudo-open-loop control (POLC) method was recently proposed. I give a theoretical proof of the stability of this method and demonstrate its superior performance and robustness against misregistration errors compared with conventional least-squares control. This can be accounted for by the fact that POLC incorporates turbulence statistics through its regularization term that can be interpreted as spatial filtering, yielding increased robustness to misregistration. For the Gemini-South 8-m telescope multiconjugate system and for median Cerro Pachon seeing, the performance of POLC in terms of rms wave-front error averaged over a 1-arc min field of view is approximately three times superior to that of a least-squares reconstructor. Performance degradation due to 30% translational misregistration on all three mirrors is approximately a 30% increased rms wave-front error, whereas a least-squares reconstructor is unstable at such a misregistration level.

9.
Appl Opt ; 44(6): 1003-10, 2005 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-15751691

RESUMO

Robustness of the recently proposed "pseudo open-loop control" algorithm against various system errors has been investigated for the representative example of the Gemini-South 8-m telescope multiconjugate adaptive-optics system. The existing model to represent the adaptive-optics system with pseudo open-loop control has been modified to account for misalignments, noise and calibration errors in deformable mirrors, and wave-front sensors. Comparison with the conventional least-squares control model has been done. We show with the aid of both transfer-function pole-placement analysis and Monte Carlo simulations that POLC remains remarkably stable and robust against very large levels of system errors and outperforms in this respect least-squares control. Approximate stability margins as well as performance metrics such as Strehl ratios and rms wave-front residuals averaged over a 1-arc min field of view have been computed for different types and levels of system errors to quantify the expected performance degradation.

10.
Appl Opt ; 42(26): 5233-50, 2003 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-14503692

RESUMO

Multiconjugate adaptive optics (MCAO) systems with 10(4)-10(5) degrees of freedom have been proposed for future giant telescopes. Using standard matrix methods to compute, optimize, and implement wavefront control algorithms for these systems is impractical, since the number of calculations required to compute and apply the reconstruction matrix scales respectively with the cube and the square of the number of adaptive optics degrees of freedom. We develop scalable open-loop iterative sparse matrix implementations of minimum variance wave-front reconstruction for telescope diameters up to 32 m with more than 10(4) actuators. The basic approach is the preconditioned conjugate gradient method with an efficient preconditioner, whose block structure is defined by the atmospheric turbulent layers very much like the layer-oriented MCAO algorithms of current interest. Two cost-effective preconditioners are investigated: a multigrid solver and a simpler block symmetric Gauss-Seidel (BSGS) sweep. Both options require off-line sparse Cholesky factorizations of the diagonal blocks of the matrix system. The cost to precompute these factors scales approximately as the three-halves power of the number of estimated phase grid points per atmospheric layer, and their average update rate is typically of the order of 10(-2) Hz, i.e., 4-5 orders of magnitude lower than the typical 10(3) Hz temporal sampling rate. All other computations scale almost linearly with the total number of estimated phase grid points. We present numerical simulation results to illustrate algorithm convergence. Convergence rates of both preconditioners are similar, regardless of measurement noise level, indicating that the layer-oriented BSGS sweep is as effective as the more elaborated multiresolution preconditioner.

11.
Appl Opt ; 42(24): 4811-8, 2003 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-12952324

RESUMO

We present sample Monte Carlo simulation results to illustrate the trends in multiconjugate adaptive optics (MCAO) performance as the telescope aperture diameter increases from 8 to 32 m with all other first-order system parameters held constant. The MCAO system considered includes three deformable mirrors, a 1-arc min square field of view, and five wave-front-sensing references consisting of either natural guide stars or laser guide stars at a range of either 30 or 90 km. The rms residual wave-front error decreases slowly with increasing aperture diameter with natural guide stars, whereas performance degrades significantly with increasing aperture diameter for laser guide stars at 30 km if the number of guide stars is held fixed. Performance with laser guide stars at 90 km is a weak function of telescope aperture diameter in the range from 8 to 32 m, with rms wave-front errors no more than 20% greater than the corresponding natural guide-star case for the same level of wave-front sensor's measurement noise.

12.
J Opt Soc Am A Opt Image Sci Vis ; 19(9): 1817-22, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12216875

RESUMO

We introduce a multigrid preconditioned conjugate-gradient (MGCG) iterative scheme for computing open-loop wave-front reconstructors for extreme adaptive optics systems. We present numerical simulations for a 17-m class telescope with n = 48756 sensor measurement grid points within the aperture, which indicate that our MGCG method has a rapid convergence rate for a wide range of subaperture average slope measurement signal-to-noise ratios. The total computational cost is of order n log n. Hence our scheme provides for fast wave-front simulation and control in large-scale adaptive optics systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA