Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(732): eadg7895, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38295187

RESUMO

A mutation in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Patients with ALS or FTD often develop autoimmunity and inflammation that precedes or coincides with the onset of neurological symptoms, but the underlying mechanisms are poorly understood. Here, we knocked out murine C9orf72 in seven hematopoietic progenitor compartments by conditional mutagenesis and found that myeloid lineage C9orf72 prevents splenomegaly, loss of tolerance, and premature mortality. Furthermore, we demonstrated that C9orf72 plays a role in lymphoid cells to prevent interleukin-17A (IL-17A) production and neutrophilia. Mass cytometry identified early and sustained elevation of the costimulatory molecule CD80 expressed on C9orf72-deficient mouse macrophages, monocytes, and microglia. Enrichment of CD80 was similarly observed in human spinal cord microglia from patients with C9ORF72-mediated ALS compared with non-ALS controls. Single-cell RNA sequencing of murine spinal cord, brain cortex, and spleen demonstrated coordinated induction of gene modules related to antigen processing and presentation and antiviral immunity in C9orf72-deficient endothelial cells, microglia, and macrophages. Mechanistically, C9ORF72 repressed the trafficking of CD80 to the cell surface in response to Toll-like receptor agonists, interferon-γ, and IL-17A. Deletion of Il17a in C9orf72-deficient mice prevented CD80 enrichment in the spinal cord, reduced neutrophilia, and reduced gut T helper type 17 cells. Last, systemic delivery of an IL-17A neutralizing antibody augmented motor performance and suppressed neuroinflammation in C9orf72-deficient mice. Altogether, we show that C9orf72 orchestrates myeloid costimulatory potency and provide support for IL-17A as a therapeutic target for neuroinflammation associated with ALS or FTD.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Humanos , Camundongos , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Proteína C9orf72/genética , Interleucina-17 , Doenças Neuroinflamatórias , Células Endoteliais/metabolismo
2.
Front Immunol ; 14: 1190219, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37575265

RESUMO

NOD-Like Receptor Family Pyrin Domain Containing 3 (NLRP3) inflammasome modulation has emerged as a potential therapeutic approach targeting inflammation amplified by pyroptotic innate immune cell death. In diseases characterized by non-cell autonomous neurodegeneration including amyotrophic lateral sclerosis (ALS), the activation of several inflammasomes has been reported. Since functional redundancy can exist among inflammasome pathways, here we investigate the effects of NLRP3 inhibition on NLRP3, NLR family CARD Domain Containing 4 (NLRC4) and non-canonical pathways to understand whether NLRP3 blockade alone can mitigate pro-inflammatory cytokine release and pyroptotic cell death in contexts where single or multiple inflammasome pathways independent of NLRP3 are activated. In this study we do not limit our insights into inflammasome biology by solely relying on the THP-1 monocytic line under the LPS/nigericin-mediated NLRP3 pathway activation paradigm. We assess therapeutic potential and limitations of NLRP3 inhibition in multi-inflammasome activation contexts utilizing various human cellular systems including cell lines expressing gain of function (GoF) mutations for several inflammasomes, primary human monocytes, macrophages, healthy and Amyotrophic Lateral Sclerosis (ALS) patient induced pluripotent stem cells (iPSC)-derived microglia (iMGL) stimulated for canonical and non-canonical inflammasome pathways. We demonstrate that NLRP3 inhibition can modulate the NLRC4 and non-canonical inflammasome pathways; however, these effects differ between immortalized, human primary innate immune cells, and iMGL. We extend our investigation in more complex systems characterized by activation of multiple inflammasomes such as the SOD1G93A mouse model. Through deep immune phenotyping by single-cell mass cytometry we demonstrate that acute NLRP3 inhibition does not ameliorate spinal cord inflammation in this model. Taken together, our data suggests that NLRP3 inhibition alone may not be sufficient to address dynamic and complex neuroinflammatory pathobiological mechanisms including dysregulation of multiple inflammasome pathways in neurodegenerative disease such as ALS.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Camundongos , Animais , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Proteínas NLR
3.
Front Mol Neurosci ; 16: 1191324, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37415834

RESUMO

Huntington's disease (HD) is an inherited autosomal dominant neurodegenerative disease caused by CAG repeats in exon 1 of the HTT gene. A hallmark of HD along with other psychiatric and neurodegenerative diseases is alteration in the neuronal circuitry and synaptic loss. Microglia and peripheral innate immune activation have been reported in pre-symptomatic HD patients; however, what "activation" signifies for microglial and immune function in HD and how it impacts synaptic health remains unclear. In this study we sought to fill these gaps by capturing immune phenotypes and functional activation states of microglia and peripheral immunity in the R6/2 model of HD at pre-symptomatic, symptomatic and end stages of disease. These included characterizations of microglial phenotypes at single cell resolution, morphology, aberrant functions such as surveillance and phagocytosis and their impact on synaptic loss in vitro and ex vivo in R6/2 mouse brain tissue slices. To further understand how relevant the observed aberrant microglial behaviors are to human disease, transcriptomic analysis was performed using HD patient nuclear sequencing data and functional assessments were conducted using induced pluripotent stem cell (iPSC)-derived microglia. Our results show temporal changes in brain infiltration of peripheral lymphoid and myeloid cells, increases in microglial activation markers and phagocytic functions at the pre-symptomatic stages of disease. Increases in microglial surveillance and synaptic uptake parallel significant reduction of spine density in R6/2 mice. These findings were mirrored by an upregulation of gene signatures in the endocytic and migratory pathways in disease-associated microglial subsets in human HD brains, as well as increased phagocytic and migratory functions of iPSC-derived HD microglia. These results collectively suggest that targeting key and specific microglial functions related to synaptic surveillance and pruning may be therapeutically beneficial in attenuating cognitive decline and psychiatric aspects of HD.

4.
Nature ; 582(7810): 89-94, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32483373

RESUMO

A hexanucleotide-repeat expansion in C9ORF72 is the most common genetic variant that contributes to amyotrophic lateral sclerosis and frontotemporal dementia1,2. The C9ORF72 mutation acts through gain- and loss-of-function mechanisms to induce pathways that are implicated in neural degeneration3-9. The expansion is transcribed into a long repetitive RNA, which negatively sequesters RNA-binding proteins5 before its non-canonical translation into neural-toxic dipeptide proteins3,4. The failure of RNA polymerase to read through the mutation also reduces the abundance of the endogenous C9ORF72 gene product, which functions in endolysosomal pathways and suppresses systemic and neural inflammation6-9. Notably, the effects of the repeat expansion act with incomplete penetrance in families with a high prevalence of amyotrophic lateral sclerosis or frontotemporal dementia, indicating that either genetic or environmental factors modify the risk of disease for each individual. Identifying disease modifiers is of considerable translational interest, as it could suggest strategies to diminish the risk of developing amyotrophic lateral sclerosis or frontotemporal dementia, or to slow progression. Here we report that an environment with reduced abundance of immune-stimulating bacteria10,11 protects C9orf72-mutant mice from premature mortality and significantly ameliorates their underlying systemic inflammation and autoimmunity. Consistent with C9orf72 functioning to prevent microbiota from inducing a pathological inflammatory response, we found that reducing the microbial burden in mutant mice with broad spectrum antibiotics-as well as transplanting gut microflora from a protective environment-attenuated inflammatory phenotypes, even after their onset. Our studies provide further evidence that the microbial composition of our gut has an important role in brain health and can interact in surprising ways with well-known genetic risk factors for disorders of the nervous system.


Assuntos
Proteína C9orf72/genética , Microbioma Gastrointestinal/fisiologia , Gliose/microbiologia , Gliose/patologia , Inflamação/genética , Inflamação/microbiologia , Medula Espinal/patologia , Esclerose Lateral Amiotrófica/genética , Esclerose Lateral Amiotrófica/patologia , Animais , Antibacterianos/farmacologia , Autoimunidade/efeitos dos fármacos , Autoimunidade/genética , Autoimunidade/imunologia , Movimento Celular/efeitos dos fármacos , Citocinas/imunologia , Transplante de Microbiota Fecal , Feminino , Demência Frontotemporal/genética , Demência Frontotemporal/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Gliose/genética , Gliose/prevenção & controle , Inflamação/patologia , Inflamação/prevenção & controle , Mutação com Perda de Função/genética , Masculino , Camundongos , Microglia/imunologia , Microglia/microbiologia , Microglia/patologia , Medula Espinal/imunologia , Medula Espinal/microbiologia , Taxa de Sobrevida
5.
J Neuroimmune Pharmacol ; 14(3): 448-461, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30758770

RESUMO

Bruton's tyrosine kinase (BTK), a critical component of B cell receptor signaling, has recently been implicated in regulation of the peripheral innate immune response. However, the role of BTK in microglia, the resident innate immune cells of the central nervous system, and its involvement in the pathobiology of neurodegenerative disease has not been explored. Here we found that BTK is a key regulator of microglial phagocytosis. Using potent BTK inhibitors and small interfering RNA (siRNA) against BTK, we observed that blockade of BTK activity decreased activation of phospholipase gamma 2, a recently identified genetic risk factor in Alzheimer's disease (AD), and reduced phagocytosis in rodent microglia and human monocyte-derived macrophages. Inhibition of BTK signaling also decreased microglial uptake of synaptosomes but did not have major impacts on other key microglial functions such as migration and cytokine release. Similarly, blocking BTK function ex vivo in acute brain slices reduced microglial phagocytosis and maintained numbers of resting microglia. In brain tissues from the 5xFAD mouse model of AD, levels of microglial BTK were elevated while in two gene expression datasets of post-mortem AD patient brain tissues, upregulation of BTK transcript was observed. Our study provides novel insights into the role of BTK in regulating microglial phagocytosis and uptake of synaptic structures and suggests that inhibiting microglial BTK may improve cognition in AD by preventing microglial activation and synaptic loss. Graphical Abstract Microglial-mediated synapse loss has been implicated in AD pathogenesis. Inhibition of BTK decreases activation of PLCγ2, a genetic risk factor in AD, and reduces microglial phagocytosis and uptake of synaptic structures. As such BTK inhibition may represent a therapeutic route to prevent microglial activation and synapse loss in AD.


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Doença de Alzheimer/tratamento farmacológico , Microglia/efeitos dos fármacos , Proteínas do Tecido Nervoso/antagonistas & inibidores , Fagocitose/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Acrilamidas/farmacologia , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia/análise , Tirosina Quinase da Agamaglobulinemia/biossíntese , Tirosina Quinase da Agamaglobulinemia/genética , Doença de Alzheimer/enzimologia , Animais , Encéfalo/enzimologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Citocinas/metabolismo , Conjuntos de Dados como Assunto , Indução Enzimática/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/enzimologia , Microglia/fisiologia , Microglia/ultraestrutura , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Piperidinas , Inibidores de Proteínas Quinases/uso terapêutico , Pirazóis/farmacologia , Pirimidinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Ratos , Ratos Sprague-Dawley
6.
Nat Commun ; 9(1): 3561, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30177815

RESUMO

The identification of drug targets is highly challenging, particularly for diseases of the brain. To address this problem, we developed and experimentally validated a general computational framework for drug target discovery that combines gene regulatory information with causal reasoning ("Causal Reasoning Analytical Framework for Target discovery"-CRAFT). Using a systems genetics approach and starting from gene expression data from the target tissue, CRAFT provides a predictive framework for identifying cell membrane receptors with a direction-specified influence over disease-related gene expression profiles. As proof of concept, we applied CRAFT to epilepsy and predicted the tyrosine kinase receptor Csf1R as a potential therapeutic target. The predicted effect of Csf1R blockade in attenuating epilepsy seizures was validated in three pre-clinical models of epilepsy. These results highlight CRAFT as a systems-level framework for target discovery and suggest Csf1R blockade as a novel therapeutic strategy in epilepsy. CRAFT is applicable to disease settings other than epilepsy.


Assuntos
Anticonvulsivantes/farmacologia , Epilepsia do Lobo Temporal/genética , Epilepsia/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Animais , Simulação por Computador , Modelos Animais de Doenças , Descoberta de Drogas , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Terapia de Alvo Molecular , Agonistas Muscarínicos/toxicidade , Pilocarpina/toxicidade , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Análise de Sequência de RNA , Biologia de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA