Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(20): 14573-14581, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38722087

RESUMO

The supramolecular interaction between lanthanide complexes and proteins is at the heart of numerous chemical and biological studies. Some of these complexes have demonstrated remarkable interaction properties with proteins or peptides in solution and in the crystalline state. Here we have used the paramagnetism of lanthanide ions to characterize the affinity of two lanthanide complexes for ubiquitin. As the interaction process is dynamic, the acquired NMR data only reflect the time average of the different steps. We have used molecular dynamics (MD) simulations to get a deeper insight into the detailed interaction scenario at the microsecond scale. This NMR/MD approach enabled us to establish that the tris-dipicolinate complex interacts specifically with arginines and lysines, while the crystallophore explores the protein surface through weak interactions with carboxylates. These observations shed new light on the dynamic interaction properties of these complexes, which will ultimately enable us to propose a crystallization mechanism.


Assuntos
Elementos da Série dos Lantanídeos , Simulação de Dinâmica Molecular , Ubiquitina , Ubiquitina/química , Elementos da Série dos Lantanídeos/química , Ressonância Magnética Nuclear Biomolecular , Ácidos Picolínicos/química , Ligação Proteica
2.
Chemistry ; : e202400900, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738452

RESUMO

Crystallophores are lanthanide complexes that have demonstrated outstanding induction of crystallization for various proteins. This article explores the effect of tailored modifications of the crystallophore first generation and their impact on the nucleating properties, and protein crystal structures. Through high-throughput crystallization experiments and dataset analysis, we evaluated the effectiveness of these variants, in comparison to the first crystallophore generation G1. In particular, the V1variant, featuring a propanol pendant arm, demonstrated the ability to produce new crystallization conditions for the proteins tested (hen-egg white lysozyme, proteinase K and thaumatin). Structural analysis performed in the case of hen egg-white lysozyme along with Molecular Dynamics simulations, highlights V1's unique behavior, taking advantage of the flexibility of its propanol arm to explore different protein surfaces and form versatile supramolecular interactions.

3.
J Am Chem Soc ; 145(43): 23702-23714, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856159

RESUMO

Radical cations (holes) produced in DNA by ionizing radiation and other oxidants yield DNA-protein cross-links (DPCs). Detailed studies of DPC formation in chromatin via this process are lacking. We describe here a comprehensive examination of DPC formation within nucleosome core particles (NCPs), which are the monomeric component of chromatin. DNA holes are introduced at defined sites within NCPs that are constructed from the bottom-up. DPCs form at DNA holes in yields comparable to those of alkali-labile DNA lesions that result from water trapping. DPC-forming efficiency and site preference within the NCP are dependent on translational and rotational positioning. Mass spectrometry and the use of mutant histones reveal that lysine residues in histone N-terminal tails and amino termini are responsible for the DPC formation. These studies are corroborated by computational simulation at the microsecond time scale, showing a wide range of interactions that can precede DPC formation. Three consecutive dGs, which are pervasive in the human genome, including G-quadruplex-forming sequences, are sufficient to produce DPCs that could impact gene expression.


Assuntos
Histonas , Nucleossomos , Humanos , Histonas/química , DNA/química , Cromatina , Lisina/genética
4.
Nucleic Acids Res ; 51(12): 6264-6285, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37191066

RESUMO

Photodynamic therapy (PDT) ideally relies on the administration, selective accumulation and photoactivation of a photosensitizer (PS) into diseased tissues. In this context, we report a new heavy-atom-free fluorescent G-quadruplex (G4) DNA-binding PS, named DBI. We reveal by fluorescence microscopy that DBI preferentially localizes in intraluminal vesicles (ILVs), precursors of exosomes, which are key components of cancer cell proliferation. Moreover, purified exosomal DNA was recognized by a G4-specific antibody, thus highlighting the presence of such G4-forming sequences in the vesicles. Despite the absence of fluorescence signal from DBI in nuclei, light-irradiated DBI-treated cells generated reactive oxygen species (ROS), triggering a 3-fold increase of nuclear G4 foci, slowing fork progression and elevated levels of both DNA base damage, 8-oxoguanine, and double-stranded DNA breaks. Consequently, DBI was found to exert significant phototoxic effects (at nanomolar scale) toward cancer cell lines and tumor organoids. Furthermore, in vivo testing reveals that photoactivation of DBI induces not only G4 formation and DNA damage but also apoptosis in zebrafish, specifically in the area where DBI had accumulated. Collectively, this approach shows significant promise for image-guided PDT.


Assuntos
Quadruplex G , Neoplasias , Fotoquimioterapia , Animais , DNA/metabolismo , Dano ao DNA , Replicação do DNA , Instabilidade Genômica , Neoplasias/genética , Neoplasias/terapia , Estresse Oxidativo , Fármacos Fotossensibilizantes/farmacologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Fotoquimioterapia/métodos
5.
Front Mol Biosci ; 9: 994915, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36406269

RESUMO

Oxidatively generated lesions such as 8-oxo-7, 8-dihydroguanine (8-oxoG) on RNA strands constitute a hallmark marker of the oxidative stress in the cell. Poly-C binding protein 1 (PCBP1) is able to specifically recognize severely damaged RNA strands containing two 8-oxoG lesions separated by five nucleobases, which trigger a signaling pathway leading to cell apoptosis. We apply an in silico protocol based on microsecond timescale all-atom classical molecular dynamics simulations associated with conformational and energy analyses to unveil the specific recognition mechanism at a molecular level. By comparing the RNA and protein behavior for sequences with six different damage profiles, our results highlight an allosteric mechanism, allowing a stronger binding of the oxidized guanine at position 9 only if another 8-oxoG lesion is present at position 15, in full agreement with experiments. We assess the role of lysine K23 and the additional ketone group of the oxidized guanine, thanks to computational site-directed mutagenesis.

6.
J Phys Chem Lett ; 12(25): 6014-6019, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34165307

RESUMO

Apurinic/apyrimidinic sites are the most common forms of DNA damage under physiological conditions, yet their structural and dynamical behavior within nucleosome core particles has just begun to be investigated and is dramatically different from that of abasic sites in B-DNA. Clusters of two or more abasic sites are repaired even less efficiently and hence constitute hot spots of high mutagenicity notably due to enhanced double-strand break formation. On the basis of an X-ray structure of a 146 bp DNA wrapped onto a histone core, we investigate the structural behavior of two bistranded abasic sites positioned at mutational hot spots during microsecond-range molecular dynamics simulations. Our simulations allow us to probe interactions of histone tails at clustered abasic site locations, with a definitive assignment of the key residues involved in the NCP-catalyzed formation of DNA-protein cross-linking in line with recent experimental findings, and pave the way for a systematic assessment of the response of histone tails to DNA lesions.


Assuntos
Histonas/química , Nucleossomos/metabolismo , Histonas/genética , Histonas/metabolismo , Modelos Moleculares , Mutagênese , Mutação , Nucleossomos/genética , Conformação Proteica
7.
Comput Struct Biotechnol J ; 19: 2861-2869, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093997

RESUMO

The combination of several closely spaced DNA lesions, which can be induced by a single radical hit, constitutes a hallmark in the DNA damage landscape and radiation chemistry. The occurrence of such a tandem base lesion gives rise to a strong coupling with the double helix degrees of freedom and induces important structural deformations, in contrast to DNA strands containing a single oxidized nucleobase. Although such complex lesions are known to be refractory to repair by DNA glycosylases, there is still a lack of structural evidence to rationalize these phenomena. In this contribution, we explore, by numerical modeling and molecular simulations, the behavior of the bacterial glycosylase responsible for base excision repair (MutM), specialized in excising oxidatively-damaged defects such as 7,8-dihydro-8-oxoguanine (8-oxoG). The difference in lesion recognition between a simple damage and a tandem lesion featuring an additional abasic site is assessed at atomistic resolution owing to microsecond molecular dynamics simulations and machine learning postprocessing, allowing to extensively pinpoint crucial differences in the interaction patterns of the damaged bases. Our results reveal substantial changes in the interaction network surrounding the 8-oxoG upon addition of an adjacent abasic site, leading to the perturbation of the intercalation triad which is crucial for lesion recognition and processing. The recognition process might also be impacted by a more constrained MutM-DNA binding upon tandem damage, as shown by the machine learning post-processing. This work advocates for the use of such high throughput numerical simulations for exploring the complex combinatorial chemistry of tandem DNA lesions repair and more generally local multiple damaged sites of the utmost significance in radiation chemistry.

8.
J Chem Phys ; 154(13): 135103, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33832258

RESUMO

Sequence dependence of the (6-4) photoproduct conformational landscape when embedded in six 25-bp duplexes is evaluated along extensive unbiased and enhanced (replica exchange with solute tempering, REST2) molecular dynamics simulations. The structural reorganization as the central pyrimidines become covalently tethered is traced back in terms of non-covalent interactions, DNA bending, and extrusion of adenines of the opposite strands. The close sequence pattern impacts the conformational landscape around the lesion, inducing different upstream and downstream flexibilities. Moreover, REST2 simulations allow us to probe structures possibly important for damaged DNA recognition.


Assuntos
DNA/química , Pirimidinas/química , Pirimidinonas/química , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Processos Fotoquímicos
9.
J Phys Chem B ; 124(50): 11371-11378, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33270456

RESUMO

Functionalized supramolecular cages are of growing importance in biology and biochemistry. They have recently been proposed as efficient auxiliaries to obtain high-resolution cocrystallized proteins. Here, we propose a molecular dynamics investigation of the supramolecular association of sulfonated calix-[8]-arenes to cytochrome c starting from initially distant proteins and ligands. We characterize two main binding sites for the sulfonated calixarene on the cytochrome c surface which are in perfect agreement with the previous experiments with regard to the structure (comparison with the X-ray structure PDB 6GD8) and the binding free energies [comparison between the molecular mechanics Poisson-Boltzmann surface area analysis and the isothermal titration calorimetry measurements]. The per-residue decomposition of the interaction energies reveals the detailed picture of this electrostatically driven association and notably the role of arginine R13 as a bridging residue between the two main anchoring sites. In addition, the analysis of the residue behavior by means of a supervised machine learning protocol unveils the formation of a hydrogen bond network far from the binding sites, increasing the rigidity of the protein. This study paves the way toward an automated procedure to predict the supramolecular protein-cage association, with the possibility of a computational screening of new promising derivatives for controlled protein assembly and protein surface recognition processes.


Assuntos
Calixarenos , Simulação de Dinâmica Molecular , Sítios de Ligação , Citocromos c , Ligação Proteica , Proteínas , Termodinâmica
10.
Sci Rep ; 10(1): 17314, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33057206

RESUMO

Apurinic/apyrimidinic (AP) sites are the most common DNA lesions, which benefit from a most efficient repair by the base excision pathway. The impact of losing a nucleobase on the conformation and dynamics of B-DNA is well characterized. Yet AP sites seem to present an entirely different chemistry in nucleosomal DNA, with lifetimes reduced up to 100-fold, and the much increased formation of covalent DNA-protein cross-links leading to strand breaks, refractory to repair. We report microsecond range, all-atom molecular dynamics simulations that capture the conformational dynamics of AP sites and their tetrahydrofuran analogs at two symmetrical positions within a nucleosome core particle, starting from a recent crystal structure. Different behaviours between the deoxyribo-based and tetrahydrofuran-type abasic sites are evidenced. The two solvent-exposed lesion sites present contrasted extrahelicities, revealing the crucial role of the position of a defect around the histone core. Our all-atom simulations also identify and quantify the frequency of several spontaneous, non-covalent interactions between AP and positively-charged residues from the histones H2A and H2B tails that prefigure DNA-protein cross-links. Such an in silico mapping of DNA-protein cross-links gives important insights for further experimental studies involving mutagenesis and truncation of histone tails to unravel mechanisms of DPCs formation.


Assuntos
DNA , Simulação de Dinâmica Molecular , Nucleossomos , Animais , Dano ao DNA , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Histonas , Humanos , Conformação de Ácido Nucleico
11.
J Chem Theory Comput ; 16(9): 5972-5981, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32810397

RESUMO

The pyrimidine-pyrimidone (6-4) photoproduct (64-PP) is an important photoinduced DNA lesion constituting a mutational signature for melanoma. The structural impact of 64-PP on DNA complexed with histones affects the lesion mutagenicity and repair but remains poorly understood. Here we investigate the conformational dynamics of DNA-containing 64-PP within the nucleosome core particle by atomic-resolution molecular dynamics simulations and multiscale data analysis. We demonstrate that the histone core exerts important mechanical restraints that largely decrease global DNA structural fluctuations. However, the local DNA flexibility at the damaged site is enhanced due to imperfect structural adaptation to restraints imposed by the histone core. If 64-PP faces the histone core and is therefore not directly accessible by the repair protein, the complementary strand facing the solvent is deformed and exhibits higher flexibility than the corresponding strand in a naked, undamaged DNA. This may serve as an initial recognition signal for repair. Our simulations also pinpoint the structural role of proximal residues from the truncated histone tails.


Assuntos
DNA/química , Histonas/química , Simulação de Dinâmica Molecular , Dímeros de Pirimidina/química , Ligação de Hidrogênio , Conformação de Ácido Nucleico , Raios Ultravioleta
12.
Phys Chem Chem Phys ; 21(31): 17072-17081, 2019 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-31313765

RESUMO

The repair of sun-induced DNA lesions by photolyases is driven by a photoinduced electron transfer from a fully reduced FAD to the damaged DNA. A chain of several aromatic residues connecting FAD to solvent ensures the prior photoreduction of the FAD cofactor. In PhrA, a class III CPD photolyase, two branching tryptophan charge transfer pathways have been characterized. According to previous experiments, both pathways play a role in the FAD photoreduction. To provide a molecular insight to the charge transfer abilities of both pathways, we perform multiscales simulations where the protein motion and the positive charge are simultaneously propagated. Our computational approach reveals that one pathway drives a very fast charge transfer whereas the other pathway provides a very good thermodynamic stabilization of the positive charge. During the simulations, the positive charge firstly moves on the fast triad, while a reorganization of the close FAD˙- environment occurs. Then, backward transfers can lead to the propagation of the positive charge on the second pathway. After one nanosecond, we observe a nearly equal probability to find the charge at ending tryptophan of either pathway; eventually the charge distribution will likely evolve towards a charge stabilization on the last tryptophan of the slowest pathway. Our results highlight the role the protein environment, which manages the association of a kinetic and a thermodynamic pathways to trigger a fast and efficient FAD photoreduction.


Assuntos
Reparo do DNA , Desoxirribodipirimidina Fotoliase/química , Modelos Moleculares , Transporte de Elétrons , Flavina-Adenina Dinucleotídeo/química , Cinética , Oxirredução , Processos Fotoquímicos , Conformação Proteica , Termodinâmica , Triptofano/química
13.
Phys Chem Chem Phys ; 21(22): 11956-11966, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31134233

RESUMO

Photolyases (PL) and cryptochromes (CRY) are light-sensitive flavoproteins, respectively, involved in DNA repair and signal transduction. Their activation is triggered by an electron transfer process, which partially or fully reduces the photo-activated FAD cofactor. The full reduction additionally requires a proton transfer to the isoalloxazine ring. In plant CRY, an efficient proton transfer takes place within several µs, enabled by a conserved aspartate working as a proton donor, whereas in E. coli PL a proton transfer occurs in the 4 s timescale without any obvious proton donor, indicating the presence of a long-range proton transfer pathway. Unexpectedly, the insertion of an aspartate as a proton donor in a suitable position for proton transfer in E. coli PL does not initiate a transfer process similar to plant CRY, but even prevents the formation of a protonated FAD. In the present work, thanks to a combination of classical molecular dynamics and state-of-the-art DFTB3/MM simulations, we identify a proton transfer pathway from bulk to FAD in E. coli PL associated with a free energy profile in agreement with the experimental kinetics data. The free energy profiles of the proton transfer between aspartate and FAD show an inversion of the driving force between plant CRY and E. coli PL mutants. In the latter, the proton transfer from the aspartate is faster than in plant CRY but also thermodynamically disfavoured, in agreement with the experimental data. Our results further illustrate the fine tuning of the electrostatic FAD environment and the adaptability of the FAD pocket to ensure the divergent functions of the members of the PL-CRY family.


Assuntos
Criptocromos/química , Desoxirribodipirimidina Fotoliase/química , Flavina-Adenina Dinucleotídeo/química , Prótons , Sítios de Ligação , Teoria da Densidade Funcional , Desoxirribodipirimidina Fotoliase/genética , Escherichia coli/química , Modelos Químicos , Simulação de Dinâmica Molecular , Mutação , Oxirredução , Termodinâmica , Água/química
14.
FEBS J ; 286(9): 1765-1779, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30706696

RESUMO

Prokaryotic (6-4) photolyases branch at the base of the evolution of cryptochromes and photolyases. Prototypical members contain an iron-sulphur cluster which was lost in the evolution of the other groups. In the Agrobacterium (6-4) photolyase PhrB, the repair of DNA lesions containing UV-induced (6-4) pyrimidine dimers is stimulated by Mg2+ . We propose that Mg2+ is required for efficient lesion binding and for charge stabilization after electron transfer from the FADH- chromophore to the DNA lesion. Furthermore, two highly conserved Asp residues close to the DNA-binding site are essential for the effect of Mg2+ . Simulations show that two Mg2+ bind to the region around these residues. On the other hand, DNA repair by eukaryotic (6-4) photolyases is not increased by Mg2+ . In these photolyases, structurally overlapping regions contain no Asp but positively charged Lys or Arg. During the evolution of photolyases, the role of Mg2+ in charge stabilization and enhancement of DNA binding was therefore taken over by a postiviely charged amino acid. Besides PhrB, another prokaryotic (6-4) photolyase from the marine cyanobacterium Prochlorococcus marinus, PromaPL, which contains no iron-sulphur cluster, was also investigated. This photolyase is stimulated by Mg2+ as well. The evolutionary loss of the iron-sulphur cluster due to limiting iron concentrations can occur in a marine environment as a result of iron deprivation. However, the evolutionary replacement of Mg2+ by a positively charged amino acid is unlikely to occur in a marine environment because the concentration of divalent cations in seawater is always sufficient. We therefore assume that this transition could have occurred in a freshwater environment.


Assuntos
Agrobacterium/enzimologia , Ácido Aspártico/química , Proteínas de Bactérias/química , Reparo do DNA/efeitos dos fármacos , Desoxirribodipirimidina Fotoliase/química , Magnésio/fisiologia , Agrobacterium/genética , Agrobacterium/efeitos da radiação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Simulação por Computador , DNA/efeitos da radiação , Desoxirribodipirimidina Fotoliase/genética , Desoxirribodipirimidina Fotoliase/metabolismo , Proteínas de Drosophila/química , Células Eucarióticas/enzimologia , Evolução Molecular , Flavina-Adenina Dinucleotídeo/metabolismo , Água Doce , Magnésio/farmacologia , Modelos Moleculares , Mutação de Sentido Incorreto , Filogenia , Prochlorococcus/enzimologia , Células Procarióticas/enzimologia , Ligação Proteica/efeitos dos fármacos , Conformação Proteica , Dímeros de Pirimidina/metabolismo , Raios Ultravioleta
15.
J Chem Phys ; 149(7): 072328, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30134697

RESUMO

We present a new concept of free energy calculations of chemical reactions by means of extended sampling molecular dynamics simulations. Biasing potentials are applied on partial atomic charges, which may be combined with atomic coordinates either in a single collective variable or in multi-dimensional biasing simulations. The necessary additional gradients are obtained by solving coupled-perturbed equations within the approximative density-functional tight-binding method. The new computational scheme was implemented in a combination of Gromacs and Plumed. As a prospective application, proton-coupled electron transfer in a model molecular system is studied. Two collective variables are introduced naturally, one for the proton transfer and the other for the electron transfer. The results are in qualitative agreement with the extended free simulations performed for reference. Free energy minima as well as the mechanism of the process are identified correctly, while the topology of the transition region and the height of the energy barrier are only reproduced qualitatively. The application also illustrates possible difficulties with the new methodology. These may be inefficient sampling of spatial coordinates when atomic charges are biased exclusively and a decreased stability of the simulations. Still, the new approach represents a viable alternative for free energy calculations of a certain class of chemical reactions, for instance a proton-coupled electron transfer in proteins.


Assuntos
Simulação de Dinâmica Molecular , Tirosina/química , Elétrons , Prótons , Teoria Quântica , Viés de Seleção , Termodinâmica
16.
Chem Sci ; 9(5): 1259-1272, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29675172

RESUMO

Cryptochromes and photolyases form a flavoprotein family in which the FAD chromophore undergoes light induced changes of its redox state. During this process, termed photoreduction, electrons flow from the surface via conserved amino acid residues to FAD. The bacterial (6-4) photolyase PhrB belongs to a phylogenetically ancient group. Photoreduction of PhrB differs from the typical pattern because the amino acid of the electron cascade next to FAD is a tyrosine (Tyr391), whereas photolyases and cryptochromes of other groups have a tryptophan as direct electron donor of FAD. Mutagenesis studies have identified Trp342 and Trp390 as essential for charge transfer. Trp342 is located at the periphery of PhrB while Trp390 connects Trp342 and Tyr391. The role of Tyr391, which lies between Trp390 and FAD, is however unclear as its replacement by phenylalanine did not block photoreduction. Experiments reported here, which replace Tyr391 by Ala, show that photoreduction is blocked, underlining the relevance of Tyr/Phe at position 391 and indicating that charge transfer occurs via the triad 391-390-342. This raises the question, why PhrB positions a tyrosine at this location, having a less favourable ionisation potential than tryptophan, which occurs at this position in many proteins of the photolyase/cryptochrome family. Tunnelling matrix calculations show that tyrosine or phenylalanine can be involved in a productive bridged electron transfer between FAD and Trp390, in line with experimental findings. Since replacement of Tyr391 by Trp resulted in loss of FAD and DMRL chromophores, electron transfer cannot be studied experimentally in this mutant, but calculations on a mutant model suggest that Trp might participate in the electron transfer cascade. Charge transfer simulations reveal an unusual stabilization of the positive charge on site 391 compared to other photolyases or cryptochromes. Water molecules near Tyr391 offer a polar environment which stabilizes the positive charge on this site, thereby lowering the energetic barrier intrinsic to tyrosine. This opens a second charge transfer channel in addition to tunnelling through the tyrosine barrier, based on hopping and therefore transient oxidation of Tyr391, which enables a fast charge transfer similar to proteins utilizing a tryptophan-triad. Our results suggest that evolution of the first site of the redox chain has just been possible by tuning the protein structure and environment to manage a downhill hole transfer process from FAD to solvent.

17.
J Comput Chem ; 38(18): 1612-1621, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28470751

RESUMO

Redox potentials are essential to understand biological cofactor reactivity and to predict their behavior in biological media. Experimental determination of redox potential in biological system is often difficult due to complexity of biological media but computational approaches can be used to estimate them. Nevertheless, the quality of the computational methodology remains a key issue to validate the results. Instead of looking to the best absolute results, we present here the calibration of theoretical redox potential for quinone derivatives in water coupling QM + MM or QM/MM scheme. Our approach allows using low computational cost theoretical level, ideal for long simulations in biological systems, and determination of the uncertainties linked to the calculations. © 2017 Wiley Periodicals, Inc.


Assuntos
Benzoquinonas/química , Simulação de Dinâmica Molecular , Teoria Quântica , Algoritmos , Benzoquinonas/metabolismo , Transporte de Elétrons , Estrutura Molecular , Oxirredução , Termodinâmica , Água/química
18.
J Chem Theory Comput ; 12(10): 4793-4805, 2016 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-27611912

RESUMO

In this article, four methods to calculate charge transfer integrals in the context of bridge-mediated electron transfer are tested. These methods are based on density functional theory (DFT). We consider two perturbative Green's function effective Hamiltonian methods (first, at the DFT level of theory, using localized molecular orbitals; second, applying a tight-binding DFT approach, using fragment orbitals) and two constrained DFT implementations with either plane-wave or local basis sets. To assess the performance of the methods for through-bond (TB)-dominated or through-space (TS)-dominated transfer, different sets of molecules are considered. For through-bond electron transfer (ET), several molecules that were originally synthesized by Paddon-Row and co-workers for the deduction of electronic coupling values from photoemission and electron transmission spectroscopies, are analyzed. The tested methodologies prove to be successful in reproducing experimental data, the exponential distance decay constant and the superbridge effects arising from interference among ET pathways. For through-space ET, dedicated π-stacked systems with heterocyclopentadiene molecules were created and analyzed on the basis of electronic coupling dependence on donor-acceptor distance, structure of the bridge, and ET barrier height. The inexpensive fragment-orbital density functional tight binding (FODFTB) method gives similar results to constrained density functional theory (CDFT) and both reproduce the expected exponential decay of the coupling with donor-acceptor distances and the number of bridging units. These four approaches appear to give reliable results for both TB and TS ET and present a good alternative to expensive ab initio methodologies for large systems involving long-range charge transfers.

19.
Arch Biochem Biophys ; 582: 28-41, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26116376

RESUMO

This Review presents an overview of the most common numerical simulation approaches for the investigation of electron transfer (ET) in proteins. We try to highlight the merits of the different approaches but also the current limitations and challenges. The article is organized into three sections. Section 2 deals with direct simulation algorithms of charge migration in proteins. Section 3 summarizes the methods for testing the applicability of the Marcus theory for ET in proteins and for evaluating key thermodynamic quantities entering the reaction rates (reorganization energies and driving force). Recent studies interrogating the validity of the theory due to the presence of non-ergodic effects or of non-linear responses are also described. Section 4 focuses on the tunneling aspects of electron transfer. How can the electronic coupling between charge transfer states be evaluated by quantum chemistry approaches and rationalized? What interesting physics regarding the impact of protein dynamics on tunneling can be addressed? We will illustrate the different sections with examples taken from the literature to show what types of system are currently manageable with current methodologies. We also take care to recall what has been learned on the biophysics of ET within proteins thanks to the advent of atomistic simulations.


Assuntos
Modelos Moleculares , Proteínas/metabolismo , Transporte de Elétrons , Elétrons , Modelos Lineares , Proteínas/química
20.
Acc Chem Res ; 48(4): 1090-7, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25730126

RESUMO

Electron transfer in biological systems drives the processes of life. From cellular respiration to photosynthesis and enzymatic catalysis, electron transfers (ET) are chemical processes on which essential biological functions rely. Over the last 40 years, scientists have sought understanding of how these essential processes function in biology. One important breakthrough was the discovery that Marcus theory (MT) of electron transfer is applicable to biological systems. Chemists have experimentally collected both the reorganization energies (λ) and the driving forces (ΔG°), two parameters of Marcus theory, for a large variety of ET processes in proteins. At the same time, theoretical chemists have developed computational approaches that rely on molecular dynamics and quantum chemistry calculations to access numerical estimates of λ and ΔG°. Yet another crucial piece in determining the rate of an electron transfer is the electronic coupling between the initial and final electronic wave functions. This is an important prefactor in the nonadiabatic rate expression, since it reflects the probability that an electron tunnels from the electron donor to the acceptor through the intervening medium. The fact that a protein matrix supports electron tunneling much more efficiently than vacuum is now well documented, both experimentally and theoretically. Meanwhile, many chemists have provided examples of the rich physical chemistry that can be induced by protein dynamics. This Account describes our studies of the dynamical effects on electron tunneling. We present our analysis of two examples of natural biological systems through MD simulations and tunneling pathway analyses. Through these examples, we show that protein dynamics sustain efficient tunneling. Second, we introduce two time scales: τcoh and τFC. The former characterizes how fast the electronic coupling varies with nuclear vibrations (which cause dephasing). The latter reflects the time taken by the system to leave the crossing region. In the framework of open quantum systems, τFC is a short time approximation of the characteristic decoherence time of the electronic subsystem in interaction with its nuclear environment. The comparison of the respective values of τcoh and τFC allows us to probe the occurrence of non-Condon effects. We use ab initio MD simulations to analyze how decoherence appears in several biological cofactors. We conclude that we cannot account for its order of magnitude by considering only the atoms or bonds directly concerned with the transfer. Decoherence results from contributions from all atoms of the system appearing with a time delay that increases with the distance from the primarily concerned atoms or bonds. The delay and magnitude of the contributions depend on the chemical nature of the system. Finally, we present recent developments based on constrained DFT for efficient and accurate evaluations of the electronic coupling in ab initio MD simulations. These are promising methods to study the subtle fluctuations of the electronic coupling and the mechanisms of electronic decoherence in biological systems.


Assuntos
Simulação de Dinâmica Molecular , Proteínas/química , Teoria Quântica , Transporte de Elétrons , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA