Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 15: 1320065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38426206

RESUMO

Background: Angiopoietin-like 2 (ANGPTL2) is a pro-inflammatory and pro-oxidant circulating protein that predicts and promotes chronic inflammatory diseases such as atherosclerosis in humans. Transgenic murine models demonstrated the deleterious role of ANGPTL2 in vascular diseases, while deletion of ANGPTL2 was protective. The nature of its role in cardiac tissues is, however, less clear. Indeed, in adult mice knocked down (KD) for ANGPTL2, we recently reported a mild left ventricular (LV) dysfunction originating from a congenital aortic valve stenosis, demonstrating that ANGPTL2 is essential to cardiac development and function. Hypothesis: Because we originally demonstrated that the KD of ANGPTL2 protected vascular endothelial function via an upregulation of arterial NOX4, promoting the beneficial production of dilatory H2O2, we tested the hypothesis that increased cardiac NOX4 could negatively affect cardiac redox and remodeling and contribute to LV dysfunction observed in adult Angptl2-KD mice. Methods and results: Cardiac expression and activity of NOX4 were higher in KD mice, promoting higher levels of cardiac H2O2 when compared to wild-type (WT) mice. Immunofluorescence showed that ANGPTL2 and NOX4 were co-expressed in cardiac cells from WT mice and both proteins co-immunoprecipitated in HEK293 cells, suggesting that ANGPTL2 and NOX4 physically interact. Pressure overload induced by transverse aortic constriction surgery (TAC) promoted LV systolic dysfunction in WT mice but did not further exacerbate the dysfunction in KD mice. Importantly, the severity of LV systolic dysfunction in KD mice (TAC and control SHAM) correlated with cardiac Nox4 expression. Injection of an adeno-associated virus (AAV9) delivering shRNA targeting cardiac Nox4 expression fully reversed LV systolic dysfunction in KD-SHAM mice, demonstrating the causal role of NOX4 in cardiac dysfunction in KD mice. Targeting cardiac Nox4 expression in KD mice also induced an antioxidant response characterized by increased expression of NRF2/KEAP1 and catalase. Conclusion: Together, these data reveal that the absence of ANGPTL2 induces an upregulation of cardiac NOX4 that contributes to oxidative stress and LV dysfunction. By interacting and repressing cardiac NOX4, ANGPTL2 could play a new beneficial role in the maintenance of cardiac redox homeostasis and function.

2.
Int J Mol Sci ; 24(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894719

RESUMO

NTPDase1/CD39, the major vascular ectonucleotidase, exerts thrombo-immunoregulatory function by controlling endothelial P2 receptor activation. Despite the well-described release of ATP from endothelial cells, few data are available regarding the potential role of CD39 as a regulator of arterial diameter. We thus investigated the contribution of CD39 in short-term diameter adaptation and long-term arterial remodeling in response to flow using Entpd1-/- male mice. Compared to wild-type littermates, endothelial-dependent relaxation was modified in Entpd1-/- mice. Specifically, the vasorelaxation in response to ATP was potentiated in both conductance (aorta) and small resistance (mesenteric and coronary) arteries. By contrast, the relaxing responses to acetylcholine were supra-normalized in thoracic aortas while decreased in resistance arteries from Entpd1-/- mice. Acute flow-mediated dilation, measured via pressure myography, was dramatically diminished and outward remodeling induced by in vivo chronic increased shear stress was altered in the mesenteric resistance arteries isolated from Entpd1-/- mice compared to wild-types. Finally, changes in vascular reactivity in Entpd1-/- mice were also evidenced by a decrease in the coronary output measured in isolated perfused hearts compared to the wild-type mice. Our results highlight a key regulatory role for purinergic signaling and CD39 in endothelium-dependent short- and long-term arterial diameter adaptation to increased flow.


Assuntos
Trifosfato de Adenosina , Células Endoteliais , Masculino , Animais , Camundongos , Antígenos CD/genética , Apirase/fisiologia , Vasodilatação , Endotélio Vascular
3.
Can J Cardiol ; 39(7): 952-962, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37054880

RESUMO

BACKGROUND: Polymorphisms in the adenylate cyclase 9 (ADCY9) gene influence the benefits of the cholesteryl ester transfer protein (CETP) modulator dalcetrapib on cardiovascular events after acute coronary syndrome. We hypothesized that Adcy9 inactivation could improve cardiac function and remodelling following myocardial infarction (MI) in absence of CETP activity. METHODS: Wild-type (WT) and Adcy9-inactivated (Adcy9Gt/Gt) male mice, transgenic or not for human CETP (tgCETP+/-), were subjected to MI by permanent left anterior descending coronary artery ligation and studied for 4 weeks. Left ventricular (LV) function was assessed by echocardiography at baseline, 1, and 4 weeks after MI. At sacrifice, blood, spleen and bone marrow cells were collected for flow cytometry analysis, and hearts were harvested for histologic analyses. RESULTS: All mice developed LV hypertrophy, dilation, and systolic dysfunction, but Adcy9Gt/Gt mice exhibited reduced pathologic LV remodelling and better LV function compared with WT mice. There were no differences between tgCETP+/- and Adcy9Gt/Gt tgCETP+/- mice, which both exhibited intermediate responses. Histologic analyses showed smaller cardiomyocyte size, reduced infarct size, and preserved myocardial capillary density in the infarct border zone in Adcy9Gt/Gt vs WT mice. Count of bone marrow T cells and B cells were significantly increased in Adcy9Gt/Gt mice compared with the other genotypes. CONCLUSIONS: Adcy9 inactivation reduced infarct size, pathologic remodelling, and cardiac dysfunction. These changes were accompanied by preserved myocardial capillary density and increased adaptive immune response. Most of the benefits of Adcy9 inactivation were only observed in the absence of CETP.


Assuntos
Infarto do Miocárdio , Animais , Humanos , Masculino , Camundongos , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Infarto do Miocárdio/complicações , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Remodelação Ventricular/fisiologia
4.
J Am Heart Assoc ; 10(4): e017791, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33533257

RESUMO

Background Mitogen-activated protein kinase-activated protein kinase-2 (MK2) is a protein serine/threonine kinase activated by p38α/ß. Herein, we examine the cardiac phenotype of pan MK2-null (MK2-/-) mice. Methods and Results Survival curves for male MK2+/+ and MK2-/- mice did not differ (Mantel-Cox test, P=0.580). At 12 weeks of age, MK2-/- mice exhibited normal systolic function along with signs of possible early diastolic dysfunction; however, aging was not associated with an abnormal reduction in diastolic function. Both R-R interval and P-R segment durations were prolonged in MK2-deficient mice. However, heart rates normalized when isolated hearts were perfused ex vivo in working mode. Ca2+ transients evoked by field stimulation or caffeine were similar in ventricular myocytes from MK2+/+ and MK2-/- mice. MK2-/- mice had lower body temperature and an age-dependent reduction in body weight. mRNA levels of key metabolic genes, including Ppargc1a, Acadm, Lipe, and Ucp3, were increased in hearts from MK2-/- mice. For equivalent respiration rates, mitochondria from MK2-/- hearts showed a significant decrease in Ca2+ sensitivity to mitochondrial permeability transition pore opening. Eight weeks of pressure overload increased left ventricular mass in MK2+/+ and MK2-/- mice; however, after 2 weeks the increase was significant in MK2+/+ but not MK2-/- mice. Finally, the pressure overload-induced decrease in systolic function was attenuated in MK2-/- mice 2 weeks, but not 8 weeks, after constriction of the transverse aorta. Conclusions Collectively, these results implicate MK2 in (1) autonomic regulation of heart rate, (2) cardiac mitochondrial function, and (3) the early stages of myocardial remodeling in response to chronic pressure overload.


Assuntos
Pressão Sanguínea/fisiologia , Bradicardia/fisiopatologia , Cardiomiopatia Hipertrófica/fisiopatologia , Frequência Cardíaca/fisiologia , Mitocôndrias Cardíacas/metabolismo , Função Ventricular Esquerda/fisiologia , Remodelação Ventricular , Animais , Bradicardia/diagnóstico , Bradicardia/metabolismo , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Serina-Treonina Quinases/deficiência
5.
Nature ; 587(7834): 460-465, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33149301

RESUMO

Atrial fibrillation, the most common cardiac arrhythmia, is an important contributor to mortality and morbidity, and particularly to the risk of stroke in humans1. Atrial-tissue fibrosis is a central pathophysiological feature of atrial fibrillation that also hampers its treatment; the underlying molecular mechanisms are poorly understood and warrant investigation given the inadequacy of present therapies2. Here we show that calcitonin, a hormone product of the thyroid gland involved in bone metabolism3, is also produced by atrial cardiomyocytes in substantial quantities and acts as a paracrine signal that affects neighbouring collagen-producing fibroblasts to control their proliferation and secretion of extracellular matrix proteins. Global disruption of calcitonin receptor signalling in mice causes atrial fibrosis and increases susceptibility to atrial fibrillation. In mice in which liver kinase B1 is knocked down specifically in the atria, atrial-specific knockdown of calcitonin promotes atrial fibrosis and increases and prolongs spontaneous episodes of atrial fibrillation, whereas atrial-specific overexpression of calcitonin prevents both atrial fibrosis and fibrillation. Human patients with persistent atrial fibrillation show sixfold lower levels of myocardial calcitonin compared to control individuals with normal heart rhythm, with loss of calcitonin receptors in the fibroblast membrane. Although transcriptome analysis of human atrial fibroblasts reveals little change after exposure to calcitonin, proteomic analysis shows extensive alterations in extracellular matrix proteins and pathways related to fibrogenesis, infection and immune responses, and transcriptional regulation. Strategies to restore disrupted myocardial calcitonin signalling thus may offer therapeutic avenues for patients with atrial fibrillation.


Assuntos
Arritmias Cardíacas/metabolismo , Calcitonina/metabolismo , Fibrinogênio/biossíntese , Átrios do Coração/metabolismo , Miocárdio/metabolismo , Comunicação Parácrina , Animais , Arritmias Cardíacas/patologia , Arritmias Cardíacas/fisiopatologia , Fibrilação Atrial , Colágeno Tipo I/metabolismo , Feminino , Fibroblastos/metabolismo , Fibrose/metabolismo , Fibrose/patologia , Átrios do Coração/citologia , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Humanos , Masculino , Camundongos , Miocárdio/citologia , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Receptores da Calcitonina/metabolismo
6.
Sci Rep ; 9(1): 8203, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31160695

RESUMO

The present study tested the hypothesis that p38α MAPK inhibition leads to cell cycle re-entry of neonatal ventricular cardiomyocytes (NNVMs) and de novo nestin expression in response to thrombin and after apex resection of the neonatal rat heart. Thrombin (1 U/ml) treatment of 1-day old NNVMs did not induce cell cycle re-entry or nestin expression. Acute exposure of NNVMs to thrombin increased p38α MAPK and HSP27 phosphorylation and p38α/ß MAPK inhibitor SB203580 abrogated HSP27 phosphorylation. Thrombin and SB203580 co-treatment of NNVMs led to bromodeoxyuridine incorporation and nestin expression. SB203580 (5 mg/kg) administration immediately after apex resection of 1-day old neonatal rat hearts and continued for two additional days shortened the fibrin clot length sealing the exposed left ventricular chamber. SB203580-treatment increased the density of troponin-T(+)-NNVMs that incorporated bromodeoxyuridine and expressed nuclear phosphohistone-3. Nestin(+)-NNVMs were selectively detected at the border of the fibrin clot and SB203580 potentiated the density that re-entered the cell cycle. These data suggest that the greater density of ventricular cardiomyocytes and nestin(+)-ventricular cardiomyocytes that re-entered the cell cycle after SB203580 treatment of the apex-resected neonatal rat heart during the acute phase of fibrin clot formation may be attributed in part to inhibition of thrombin-mediated p38α MAPK signalling.


Assuntos
Ventrículos do Coração/citologia , Ventrículos do Coração/cirurgia , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Miócitos Cardíacos/citologia , Nestina/metabolismo , Trombina/metabolismo , Animais , Animais Recém-Nascidos , Anti-Inflamatórios não Esteroides/farmacologia , Ciclo Celular , Divisão Celular/efeitos dos fármacos , Fibrina/metabolismo , Imidazóis/farmacologia , Fosforilação , Piridinas/farmacologia , Ratos , Transdução de Sinais
7.
Geroscience ; 41(5): 511-532, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31093829

RESUMO

Cognitive functions are dependent upon intercommunications between the cellular components of the neurovascular unit (NVU). Vascular risk factors are associated with a more rapid rate of cognitive decline with aging and cerebrovascular diseases magnify both the incidence and the rate of cognitive decline. The causal relationship between vascular risk factors and injury to the NVU is, however, lacking. We hypothesized that vascular risk factors, such as hypertension and dyslipidemia, promote disruption of the NVU leading to early cognitive impairment. We compared brain structure and cerebrovascular functions of 1-year old (middle-aged) male wild-type (WT) and atherosclerotic hypertensive (LDLr-/-:hApoB+/+, ATX) mice. In addition, mice were subjected, or not, to a transverse aortic constriction (TAC) for 6 weeks to assess the acute impact of an increase in systolic blood pressure on the NVU and cognitive functions. Compared with WT mice, ATX mice prematurely developed cognitive decline associated with cerebral micro-hemorrhages, loss of microvessel density and brain atrophy, cerebral endothelial cell senescence and dysfunction, brain inflammation, and oxidative stress associated with blood-brain barrier leakage and brain hypoperfusion. These data suggest functional disturbances in both vascular and parenchymal components of the NVU. Exposure to TAC-induced systolic hypertension promoted cerebrovascular damage and cognitive decline in WT mice, similar to those observed in sham-operated ATX mice; TAC exacerbated the existing cerebrovascular dysfunctions and cognitive failure in ATX mice. Thus, a hemodynamic stress such as systolic hypertension could initiate the cascade involving cerebrovascular injury and NVU deregulation and lead to cognitive decline, a process accelerated in atherosclerotic mice.


Assuntos
Aterosclerose/fisiopatologia , Encéfalo/irrigação sanguínea , Disfunção Cognitiva/fisiopatologia , Demência Vascular/fisiopatologia , Hipertensão/fisiopatologia , Sístole/fisiologia , Animais , Atrofia , Barreira Hematoencefálica/fisiopatologia , Encéfalo/patologia , Senescência Celular/fisiologia , Hemorragia Cerebral/fisiopatologia , Modelos Animais de Doenças , Células Endoteliais/patologia , Camundongos Transgênicos , Microvasos/patologia , Estresse Oxidativo/fisiologia
8.
Am J Physiol Heart Circ Physiol ; 316(6): H1281-H1296, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30901279

RESUMO

MK5 is a protein serine/threonine kinase activated by p38, ERK3, and ERK4 MAPKs. MK5 mRNA and immunoreactivity are detected in mouse cardiac fibroblasts, and MK5 haplodeficiency attenuates the increase in collagen 1-α1 mRNA evoked by pressure overload. The present study examined the effect of MK5 haplodeficiency on reparative fibrosis following myocardial infarction (MI). Twelve-week-old MK5+/- and wild-type littermate (MK5+/+) mice underwent ligation of the left anterior descending coronary artery (LADL). Surviving mice were euthanized 8 or 21 days post-MI. Survival rates did not differ significantly between MK5+/+ and MK5+/- mice, with rupture of the LV wall being the primary cause of death. Echocardiographic imaging revealed similar increases in LV end-diastolic diameter, myocardial performance index, and wall motion score index in LADL-MK5+/+ and LADL-MK5+/- mice. Area at risk did not differ between LADL-MK5+/+ and LADL-MK5+/- hearts. In contrast, infarct size, scar area, and scar collagen content were reduced in LADL-MK5+/- hearts. Immunohistochemical analysis of mice experiencing heart rupture revealed increased MMP-9 immunoreactivity in the infarct border zone of LADL-MK5+/- hearts compared with LADL-MK5+/+. Although inflammatory cell infiltration was similar in LADL-MK5+/+ and LADL-MK5+/- hearts, angiogenesis was more pronounced in the infarct border zone of LADL-MK5+/- mice. Characterization of ventricular fibroblasts revealed reduced motility and proliferation in fibroblasts isolated from MK5-/- mice compared with those from both wild-type and haplodeficient mice. siRNA-mediated knockdown of MK5 in fibroblasts from wild-type mice also impaired motility. Hence, reduced MK5 expression alters fibroblast function and scar morphology but not mortality post-MI. NEW & NOTEWORTHY MK5/PRAK is a protein serine/threonine kinase activated by p38 MAPK and/or atypical MAPKs ERK3/4. MK5 haplodeficiency reduced infarct size, scar area, and scar collagen content post-myocardial infarction. Motility and proliferation were reduced in cultured MK5-null cardiac myofibroblasts.


Assuntos
Cicatriz/enzimologia , Colágeno/metabolismo , Haploinsuficiência , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Infarto do Miocárdio/enzimologia , Miocárdio/enzimologia , Miofibroblastos/enzimologia , Proteínas Serina-Treonina Quinases/deficiência , Cicatrização , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , Cicatriz/patologia , Cicatriz/fisiopatologia , Modelos Animais de Doenças , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Metaloproteinase 9 da Matriz/metabolismo , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/genética , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Miocárdio/patologia , Miofibroblastos/patologia , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais , Função Ventricular Esquerda , Remodelação Ventricular
9.
Cardiovasc Res ; 115(1): 94-106, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30016400

RESUMO

Aims: Heart failure (HF) produces left atrial (LA)-selective fibrosis and promotes atrial fibrillation. HF also causes adrenergic activation, which contributes to remodelling via a variety of signalling molecules, including the exchange protein activated by cAMP (Epac). Here, we evaluate the effects of Epac1-signalling on LA fibroblast (FB) function and its potential role in HF-related atrial remodelling. Methods and results: HF was induced in adult male mongrel dogs by ventricular tachypacing (VTP). Epac1-expression decreased in LA-FBs within 12 h (-3.9-fold) of VTP onset. The selective Epac activator, 8-pCPT (50 µM) reduced, whereas the Epac blocker ESI-09 (1 µM) enhanced, collagen expression in LA-FBs. Norepinephrine (1 µM) decreased Epac1-expression, an effect blocked by prazosin, and increased FB collagen production. The ß-adrenoceptor (AR) agonist isoproterenol increased Epac1 expression, an effect antagonized by ICI (ß2-AR-blocker), but not by CGP (ß1-AR-blocker). ß-AR-activation with isoproterenol decreased collagen expression, an effect mimicked by the ß2-AR-agonist salbutamol and blocked by the Epac1-antagonist ESI-09. Transforming growth factor-ß1, known to be activated in HF, suppressed Epac1 expression, an effect blocked by the Smad3-inhibitor SIS3. To evaluate effects on atrial fibrosis in vivo, mice subjected to myocardial infarction (MI) received the Epac-activator Sp-8-pCPT or vehicle for 2 weeks post-MI; Sp-8-pCPT diminished LA fibrosis and attenuated cardiac dysfunction. Conclusions: HF reduces LA-FB Epac1 expression. Adrenergic activation has complex effects on FBs, with α-AR-activation suppressing Epac1-expression and increasing collagen expression, and ß2-AR-activation having opposite effects. Epac1-activation reduces cardiac dysfunction and LA fibrosis post-MI. Thus, Epac1 signalling may be a novel target for the prevention of profibrillatory cardiac remodelling.


Assuntos
Fibrilação Atrial/metabolismo , Função do Átrio Esquerdo , Remodelamento Atrial , Fibroblastos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Átrios do Coração/metabolismo , Insuficiência Cardíaca/metabolismo , Infarto do Miocárdio/metabolismo , Animais , Fibrilação Atrial/etiologia , Fibrilação Atrial/patologia , Fibrilação Atrial/fisiopatologia , Células Cultivadas , Colágeno/metabolismo , Modelos Animais de Doenças , Cães , Fibroblastos/patologia , Fibrose , Átrios do Coração/patologia , Átrios do Coração/fisiopatologia , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Receptores Adrenérgicos alfa/metabolismo , Receptores Adrenérgicos beta 2/metabolismo , Transdução de Sinais
10.
Hypertension ; 73(1): 217-228, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30571552

RESUMO

A chronic and gradual increase in pulse pressure (PP) is associated with cognitive decline and dementia in older individuals, but the mechanisms remain ill-defined. We hypothesized that a chronic elevation of PP would cause brain microvascular endothelial mechanical stress, damage the neurovascular unit, and ultimately induce cognitive impairment in mice, potentially contributing to the progression of vascular dementia and Alzheimer disease. To test our hypothesis, male control wild-type mice and Alzheimer disease model APP/PS1 (amyloid precursor protein/presenilin 1) mice were exposed to a transverse aortic constriction for 6 weeks, creating a PP overload in the right carotid (ipsilateral). We show that the transverse aortic constriction procedure associated with high PP induces a cascade of vascular damages in the ipsilateral parenchymal microcirculation: in wild-type mice, it impairs endothelial dilatory and blood brain barrier functions and causes microbleeds, a reduction in microvascular density, microvascular cell death by apoptosis, leading to severe hypoperfusion and parenchymal cell senescence. These damages were associated with brain inflammation and a significant reduction in learning and spatial memories. In APP/PS1 mice, that endogenously display severe cerebral vascular dysfunctions, microbleeds, parenchymal inflammation and cognitive dysfunction, transverse aortic constriction-induced high PP further aggravates cerebrovascular damage, Aß (beta-amyloid) accumulation, and prevents learning. Our study, therefore, demonstrates that brain microvessels are vulnerable to a high PP and mechanical stress associated with transverse aortic constriction, promoting severe vascular dysfunction, disruption of the neurovascular unit, and cognitive decline. Hence, chronic elevated amplitude of the PP could contribute to the development and progression of vascular dementia including Alzheimer disease.


Assuntos
Doença de Alzheimer , Lesão Encefálica Crônica , Encéfalo , Disfunção Cognitiva , Demência Vascular , Microvasos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Animais , Pressão Sanguínea/fisiologia , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Lesão Encefálica Crônica/complicações , Lesão Encefálica Crônica/fisiopatologia , Circulação Cerebrovascular , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/fisiopatologia , Demência Vascular/metabolismo , Demência Vascular/fisiopatologia , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/fisiologia , Camundongos , Microvasos/lesões , Microvasos/fisiopatologia
11.
Circulation ; 138(16): 1677-1692, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-29674325

RESUMO

BACKGROUND: Pharmacogenomic studies have shown that ADCY9 genotype determines the effects of the CETP (cholesteryl ester transfer protein) inhibitor dalcetrapib on cardiovascular events and atherosclerosis imaging. The underlying mechanisms responsible for the interactions between ADCY9 and CETP activity have not yet been determined. METHODS: Adcy9-inactivated ( Adcy9Gt/Gt) and wild-type (WT) mice, that were or not transgenic for the CETP gene (CETPtg Adcy9Gt/Gt and CETPtg Adcy9WT), were submitted to an atherogenic protocol (injection of an AAV8 [adeno-associated virus serotype 8] expressing a PCSK9 [proprotein convertase subtilisin/kexin type 9] gain-of-function variant and 0.75% cholesterol diet for 16 weeks). Atherosclerosis, vasorelaxation, telemetry, and adipose tissue magnetic resonance imaging were evaluated. RESULTS: Adcy9Gt/Gt mice had a 65% reduction in aortic atherosclerosis compared to WT ( P<0.01). CD68 (cluster of differentiation 68)-positive macrophage accumulation and proliferation in plaques were reduced in Adcy9Gt/Gt mice compared to WT animals ( P<0.05 for both). Femoral artery endothelial-dependent vasorelaxation was improved in Adcy9Gt/Gt mice (versus WT, P<0.01). Selective pharmacological blockade showed that the nitric oxide, cyclooxygenase, and endothelial-dependent hyperpolarization pathways were all responsible for the improvement of vasodilatation in Adcy9Gt/Gt ( P<0.01 for all). Aortic endothelium from Adcy9Gt/Gt mice allowed significantly less adhesion of splenocytes compared to WT ( P<0.05). Adcy9Gt/Gt mice gained more weight than WT with the atherogenic diet; this was associated with an increase in whole body adipose tissue volume ( P<0.01 for both). Feed efficiency was increased in Adcy9Gt/Gt compared to WT mice ( P<0.01), which was accompanied by prolonged cardiac RR interval ( P<0.05) and improved nocturnal heart rate variability ( P=0.0572). Adcy9 inactivation-induced effects on atherosclerosis, endothelial function, weight gain, adipose tissue volume, and feed efficiency were lost in CETPtg Adcy9Gt/Gt mice ( P>0.05 versus CETPtg Adcy9WT). CONCLUSIONS: Adcy9 inactivation protects against atherosclerosis, but only in the absence of CETP activity. This atheroprotection may be explained by decreased macrophage accumulation and proliferation in the arterial wall, and improved endothelial function and autonomic tone.


Assuntos
Adenilil Ciclases/deficiência , Aorta/enzimologia , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Proteínas de Transferência de Ésteres de Colesterol/deficiência , Placa Aterosclerótica , Adenilil Ciclases/genética , Adiposidade , Animais , Aorta/patologia , Aorta/fisiopatologia , Doenças da Aorta/enzimologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Sistema Nervoso Autônomo/fisiopatologia , Fatores Biológicos/metabolismo , Proliferação de Células , Proteínas de Transferência de Ésteres de Colesterol/genética , Dieta Hiperlipídica , Modelos Animais de Doenças , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Lipídeos/sangue , Lipólise , Macrófagos/enzimologia , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico/metabolismo , Pró-Proteína Convertase 9/genética , Prostaglandina-Endoperóxido Sintases/metabolismo , Transdução de Sinais , Vasodilatação , Aumento de Peso
12.
Exp Biol Med (Maywood) ; 243(1): 45-49, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29192516

RESUMO

Angiopoietin-like 2 (ANGPTL2) is an inflammatory adipokine linking obesity to insulin resistance. Intermittent fasting, on the other hand, is a lifestyle intervention able to prevent obesity and diabetes but difficult to implement and maintain. Our objectives were to characterize a link between ANGPTL2 and intermittent fasting and to investigate whether the knockdown of ANGPTL2 reproduces the benefits of intermittent fasting on weight gain and insulin responsiveness in knockdown and wild-type littermates mice. Intermittent fasting, access to food ad libitum once every other day, was initiated at the age of three months and maintained for four months. Intermittent fasting decreased by 63% (p < 0.05) gene expression of angptl2 in adipose tissue of wild-type mice. As expected, intermittent fasting improved insulin sensitivity (p < 0.05) and limited weight gain (p < 0.05) in wild-type mice. Knockdown mice fed ad libitum, however, were comparable to wild-type mice following the intermittent fasting regimen: insulin sensitivity and weight gain were identical, while intermittent fasting had no additional impact on these parameters in knockdown mice. Energy intake was similar between both wild-type fed intermittent fasting and ANGPTL2 knockdown mice fed ad libitum, suggesting that intermittent fasting and knockdown of ANGPTL2 equally lower feeding efficiency. These results suggest that the reduction of ANGPTL2 could be a useful and promising strategy to prevent obesity and insulin resistance, although further investigation of the mechanisms linking ANGPTL2 and intermittent fasting is warranted. Impact statement Intermittent fasting is an efficient diet pattern to prevent weight gain and improve insulin sensitivity. It is, however, a difficult regimen to follow and compliance is expected to be very low. In this work, we demonstrate that knockdown of ANGPTL2 in mice fed ad libitum mimics the beneficial effects of intermittent fasting on weight gain and insulin sensitivity in wild-type mice. ANGPTL2 is a cytokine positively associated with fat mass in humans, which inactivation in mice improves resistance to a high-fat metabolic challenge. This study provides a novel pathway by which IF acts to limit obesity despite equivalent energy intake. The development of a pharmacological ANGPTL2 antagonist could provide an efficient tool to reduce the burden of obesity.


Assuntos
Proteínas Semelhantes a Angiopoietina/metabolismo , Jejum , Resistência à Insulina , Obesidade/prevenção & controle , Proteína 2 Semelhante a Angiopoietina , Animais , Técnicas de Silenciamento de Genes , Humanos , Hipoglicemiantes/metabolismo , Insulina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Obesidade/complicações , Redução de Peso
13.
Am J Physiol Heart Circ Physiol ; 313(1): H46-H58, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28432058

RESUMO

MAPK-activated protein kinase-5 (MK5) is a protein serine/threonine kinase that is activated by p38 MAPK and the atypical MAPKs ERK3 and ERK4. The physiological function(s) of MK5 remains unknown. Here, we examined the effect of MK5 haplodeficiency on cardiac function and myocardial remodeling. At 12 wk of age, MK5 haplodeficient mice (MK5+/-) were smaller than age-matched wild-type littermates (MK5+/+), with similar diastolic function but reduced systolic function. Transverse aortic constriction (TAC) was used to induce chronic pressure overload in 12-wk-old male MK5+/- and MK5+/+ mice. Two weeks post-TAC, heart weight-to-tibia length ratios were similarly increased in MK5+/- and MK5+/+ hearts, as was the abundance of B-type natriuretic peptide and ß-myosin heavy chain mRNA. Left ventricular ejection fraction was reduced in both MK5+/+ and MK5+/- mice, whereas regional peak systolic tissue velocities were reduced and isovolumetric relaxation time was prolonged in MK5+/+ hearts but not in MK5+/- hearts. The TAC-induced increase in collagen type 1-α1 mRNA observed in MK5+/+ hearts was markedly attenuated in MK5+/- hearts. Eight weeks post-TAC, systolic function was equally impaired in MK5+/+ and MK5+/- mice. In contrast, the increase in E wave deceleration rate and progression of hypertrophy observed in TAC MK5+/+ mice were attenuated in TAC MK5+/- mice. MK5 immunoreactivity was detected in adult fibroblasts but not in myocytes. MK5+/+, MK5+/-, and MK5-/- fibroblasts all expressed α-smooth muscle actin in culture. Hence, reduced MK5 expression in cardiac fibroblasts was associated with the attenuation of both hypertrophy and development of a restrictive filling pattern during myocardial remodeling in response to chronic pressure overload.NEW & NOTEWORTHY MAPK-activated protein kinase-5 (MK5)/p38-regulated/activated protein kinase is a protein serine/threonine kinase activated by p38 MAPK and/or the atypical MAPKs ERK3 and ERK4. MK5 immunoreactivity was detected in adult ventricular fibroblasts but not in myocytes. MK5 haplodeficiency attenuated the progression of hypertrophy, reduced collagen type 1 mRNA, and protected diastolic function in response to chronic pressure overload.


Assuntos
Hipertrofia Ventricular Esquerda/fisiopatologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Remodelação Ventricular/fisiologia , Animais , Haplótipos/genética , Hipertrofia Ventricular Esquerda/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica , Volume Sistólico , Disfunção Ventricular Esquerda/complicações
14.
Cardiovasc Res ; 113(3): 310-320, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28158495

RESUMO

AIMS: Left-atrial (LA) fibrosis is an important feature of many atrial fibrillation (AF) substrates. The JAK-STAT system contributes to cardiac remodelling, but its role in AF is unknown. Here we investigated JAK-STAT changes in an AF-model and their potential contributions to LA-fibrosis. METHODS AND RESULTS: LA-remodelling was studied in dogs with heart failure (HF) induced by ventricular tachypacing (VTP, 240 bpm), and in mice with left-ventricular (LV) dysfunction due to myocardial infarction (MI). The selective STAT-3 inhibitor S3I-201 was administered to fibroblasts in vitro or mice in vivo (10 mg/kg/d, osmotic mini-pump). HF-dogs developed LA-selective fibrosis and AF-susceptibility at 1-week VTP. The mRNA-expression of platelet-derived growth factor (PDGF, a JAK-STAT activator) isoforms A, C and D, as well as JAK2, increased in LA fibroblasts from 1-week VTP. HF upregulated protein-expression of PDGF-receptor-ß and phosphorylated (activated) signal transducer and activator of transcription 3 (STAT3) in LA. PDGF-AB stimulation of LA fibroblasts increased PDGFR-α, STAT3 and phosphorylated-STAT3 expression, as well as collagen-1 and fibronectin-1 protein secretion (by 1.6- to 20-fold), with smaller changes in LV fibroblasts. Phosphorylated-STAT3 and collagen upregulation were suppressed by the JAK2 inhibitor AG-490, PDGF receptor inhibitor AG1296 and STAT3-inhibitor SI3-201. In vivo S3I-201 treatment of MI-mice attenuated LA-fibrosis, LA-dilation and P-wave duration changes versus vehicle-control. CONCLUSIONS: HF activates the LA JAK-STAT system and enhances PDGF-signalling. JAK-STAT inhibition reduces the profibrotic effects of PDGF stimulation on canine fibroblasts in vitro while attenuating in vivo LA-fibrosis and remodelling in post-MI mice, suggesting that the JAK/STAT pathway contributes to LA-fibrogenesis and might be a potential target for LA-fibrosis prevention.

15.
Diabetes ; 65(2): 381-92, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26558681

RESUMO

Heart disease remains a major complication of diabetes, and the identification of new therapeutic targets is essential. This study investigates the role of the protein kinase MK2, a p38 mitogen-activated protein kinase downstream target, in the development of diabetes-induced cardiomyopathy. Diabetes was induced in control (MK2(+/+)) and MK2-null (MK2(-/-)) mice using repeated injections of a low dose of streptozotocin (STZ). This protocol generated in MK2(+/+) mice a model of diabetes characterized by a 50% decrease in plasma insulin, hyperglycemia, and insulin resistance (IR), as well as major contractile dysfunction, which was associated with alterations in proteins involved in calcium handling. While MK2(-/-)-STZ mice remained hyperglycemic, they showed improved IR and none of the cardiac functional or molecular alterations. Further analyses highlighted marked lipid perturbations in MK2(+/+)-STZ mice, which encompass increased 1) circulating levels of free fatty acid, ketone bodies, and long-chain acylcarnitines and 2) cardiac triglyceride accumulation and ex vivo palmitate ß-oxidation. MK2(-/-)-STZ mice were also protected against all these diabetes-induced lipid alterations. Our results demonstrate the benefits of MK2 deletion on diabetes-induced cardiac molecular and lipid metabolic changes, as well as contractile dysfunction. As a result, MK2 represents a new potential therapeutic target to prevent diabetes-induced cardiac dysfunction.


Assuntos
Diabetes Mellitus Experimental/genética , Cardiomiopatias Diabéticas/genética , Deleção de Genes , Peptídeos e Proteínas de Sinalização Intracelular/genética , Metabolismo dos Lipídeos/genética , Proteínas Serina-Treonina Quinases/genética , Animais , Carnitina/análogos & derivados , Carnitina/metabolismo , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Hiperglicemia/genética , Insulina/sangue , Resistência à Insulina/genética , Corpos Cetônicos/metabolismo , Camundongos , Contração Muscular/genética , Estreptozocina , Triglicerídeos/metabolismo
16.
J Transl Med ; 13: 142, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25948279

RESUMO

BACKGROUND: The role of endothelial progenitor cells (EPCs) in vascular repair is related to their recruitment at the sites of injury and their interaction with different components of the circulatory system. We have previously shown that EPCs bind and inhibit platelet function and impair thrombus formation via prostacyclin secretion, but the role of EPC binding to platelet P-selectin in this process has not been fully characterized. In the present study, we assessed the impact of EPCs on thrombus formation and we addressed the implication of P-selectin in this process. METHODS: EPCs were generated from human peripheral blood mononuclear cells cultured on fibronectin in conditioned media. The impact of EPCs on platelet aggregation and thrombus formation was investigated in P-selectin deficient (P-sel(-/-)) mice and their wild-type (WT) counterparts. RESULTS: EPCs significantly and dose-dependently impaired collagen-induced whole blood platelet aggregation in WT mice, whereas no effects were observed in P-sel(-/-) mice. Moreover, in a ferric chloride-induced arterial thrombosis model, infusion of EPCs significantly reduced thrombus formation in WT, but not in P-sel(-/-) mice. Furthermore, the relative mass of thrombi generated in EPC-treated P-sel(-/-) mice were significantly larger than those in EPC-treated WT mice, and the number of EPCs recruited within the thrombi and along the arterial wall was reduced in P-sel(-/-) mice as compared to WT mice. CONCLUSION: This study shows that EPCs impair platelet aggregation and reduce thrombus formation via a cellular mechanism involving binding to platelet P-selectin. These findings add new insights into the role of EPC-platelet interactions in the regulation of thrombotic events during vascular repair.


Assuntos
Plaquetas/metabolismo , Células Progenitoras Endoteliais/citologia , Regulação da Expressão Gênica , Selectina-P/genética , Adulto , Animais , Artérias Carótidas/patologia , Feminino , Humanos , Leucócitos Mononucleares/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Pessoa de Meia-Idade , Selectina-P/metabolismo , Fenótipo , Agregação Plaquetária , Ligação Proteica , Trombose/metabolismo , Trombose/patologia , Adulto Jovem
17.
Atherosclerosis ; 236(2): 277-85, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25108619

RESUMO

OBJECTIVE: Excessive neointima formation often occurs after arterial injury. Interleukin-1ß (IL-1ß) is a potent pleiotropic cytokine that has been shown to regulate neointimal proliferation. We investigated the effects of the IL-1ß modulator gevokizumab in a rat carotid denudation model. METHODS: Sprague-Dawley rats were subjected to balloon denudation of the right carotid artery and were then randomized to receive a single subcutaneous infusion immediately after balloon injury of saline (control group, n = 13) or gevokizumab (gevokizumab groups, n = 15 in each group: 1, 10 and 50 mg/kg). We evaluated the treatment effects on carotid intima-media thickness (IMT) using ultrasonography, on endothelial regrowth using Evans Blue staining and on inflammatory response using histology. We also assessed the effects of IL-1ß and gevokizumab on human umbilical vein endothelial cells (HUVEC) and rat smooth muscle cells. RESULTS: We found that carotid IMT, in the proximal part of the denuded artery at day 28, was decreased by gevokizumab 1 mg/kg compared with controls. Neointima area and the intima/media area ratio were both reduced in the gevokizumab 1 mg/kg-treated group. Gevokizumab at the 1 mg/kg dose also improved endothelial regrowth. No effect was observed with gevokizumab 10 or 50 mg/kg. Gevokizumab also decreased the inflammatory effect of IL-1ß in in vitro cell experiments and protected HUVECs from IL-1ß's deleterious effects on cell migration, apoptosis and proliferation. CONCLUSION: A single administration of gevokizumab 1 mg/kg improves endothelial regrowth and reduces neointima formation in rats following carotid denudation, at least in part through its beneficial effects on endothelial cells.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Lesões das Artérias Carótidas/tratamento farmacológico , Neointima/prevenção & controle , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/farmacologia , Aorta/citologia , Apoptose/efeitos dos fármacos , Lesões das Artérias Carótidas/diagnóstico por imagem , Lesões das Artérias Carótidas/patologia , Artéria Carótida Primitiva/diagnóstico por imagem , Artéria Carótida Primitiva/patologia , Espessura Intima-Media Carotídea , Divisão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Endotélio Vascular/fisiopatologia , Perfilação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana , Humanos , Interleucina-1beta/farmacologia , Interleucina-1beta/fisiologia , Masculino , Miócitos de Músculo Liso/efeitos dos fármacos , Neointima/tratamento farmacológico , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Regeneração , Vasculite/tratamento farmacológico , Vasculite/prevenção & controle
18.
Circ Arrhythm Electrophysiol ; 6(4): 799-808, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23884198

RESUMO

BACKGROUND: When complete atrioventricular block (AVB) occurs, infranodal escape rhythms are essential to prevent bradycardic death. The role of T-type Ca(2+) channels in pacemaking outside the sinus node is unknown. We investigated the role of T-type Ca(2+) channels in escape rhythms and bradycardia-related ventricular tachyarrhythmias after AVB in mice. METHODS AND RESULTS: Adult male mice lacking the main T-type Ca(2+) channel subunit Cav3.1 (Cav3.1(-/-)) and wild-type (WT) controls implanted with ECG telemetry devices underwent radiofrequency atrioventricular node ablation to produce AVB. Before ablation, Cav3.1(-/-) mice showed sinus bradycardia (mean±SEM; RR intervals, 148±3 versus 128±2 ms WT; P<0.001). Immediately after AVB, Cav3.1(-/-) mice had slower escape rhythms (RR intervals, 650±75 versus 402±26 ms in WT; P<0.01) but a preserved heart-rate response to isoproterenol. Over the next 24 hours, mortality was markedly greater in Cav3.1(-/-) mice (19/31; 61%) versus WT (8/26; 31%; P<0.05), and Torsades de Pointes occurred more frequently (73% Cav3.1(-/-) versus 35% WT; P<0.05). Escape rhythms improved in both groups during the next 4 weeks but remained significantly slower in Cav3.1(-/-). At 4 weeks after AVB, ventricular tachycardia was more frequent in Cav3.1(-/-) than in WT mice (746±116 versus 214±78 episodes/24 hours; P<0.01). Ventricular function remodeling was similar in Cav3.1(-/-) and WT, except for smaller post-AVB fractional-shortening increase in Cav3.1(-/-). Expression changes were seen post-AVB for a variety of genes; these tended to be greater in Cav3.1(-/-) mice, and overexpression of fetal and profibrotic genes occurred only in Cav3.1(-/-). CONCLUSIONS: This study suggests that T-type Ca(2+) channels play an important role in infranodal escape automaticity. Loss of T-type Ca(2+) channels worsens bradycardia-related mortality, increases bradycardia-associated adverse remodeling, and enhances the risk of malignant ventricular tachyarrhythmias complicating AVB.


Assuntos
Bloqueio Atrioventricular/metabolismo , Bradicardia/metabolismo , Canais de Cálcio Tipo T/metabolismo , Sinalização do Cálcio , Sistema de Condução Cardíaco/metabolismo , Frequência Cardíaca , Periodicidade , Torsades de Pointes/metabolismo , Potenciais de Ação , Animais , Bloqueio Atrioventricular/diagnóstico , Bloqueio Atrioventricular/genética , Bloqueio Atrioventricular/fisiopatologia , Bradicardia/diagnóstico , Bradicardia/genética , Bradicardia/fisiopatologia , Bradicardia/prevenção & controle , Canais de Cálcio Tipo T/deficiência , Canais de Cálcio Tipo T/genética , Modelos Animais de Doenças , Eletrocardiografia Ambulatorial , Técnicas Eletrofisiológicas Cardíacas , Regulação da Expressão Gênica , Sistema de Condução Cardíaco/fisiopatologia , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo , Telemetria , Fatores de Tempo , Torsades de Pointes/diagnóstico , Torsades de Pointes/genética , Torsades de Pointes/fisiopatologia , Torsades de Pointes/prevenção & controle , Remodelação Ventricular
19.
J Mol Cell Cardiol ; 62: 189-202, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23756157

RESUMO

Endothelin receptors are present on the nuclear membranes in adult cardiac ventricular myocytes. The objectives of the present study were to determine 1) which endothelin receptor subtype is in cardiac nuclear membranes, 2) if the receptor and ligand traffic from the cell surface to the nucleus, and 3) the effect of increased intracellular ET-1 on nuclear Ca(2+) signaling. Confocal microscopy using fluorescently-labeled endothelin analogs confirmed the presence of ETB at the nuclear membrane of rat cardiomyocytes in skinned-cells and isolated nuclei. Furthermore, in both cardiac myocytes and aortic endothelial cells, endocytosed ET:ETB complexes translocated to lysosomes and not the nuclear envelope. Although ETA and ETB can form heterodimers, the presence or absence of ETA did not alter ETB trafficking. Treatment of isolated nuclei with peptide: N-glycosidase F did not alter the electrophoretic mobility of ETB. The absence of N-glycosylation further indicates that these receptors did not originate at the cell surface. Intracellular photolysis of a caged ET-1 analog ([Trp-ODMNB(21)]ET-1) evoked an increase in nucleoplasmic Ca(2+) ([Ca(2+)]n) that was attenuated by inositol 1,4,5-trisphosphate receptor inhibitor 2-aminoethoxydiphenyl borate and prevented by pre-treatment with ryanodine. A caged cell-permeable analog of the ETB-selective antagonist IRL-2500 blocked the ability of intracellular cET-1 to increase [Ca(2+)]n whereas extracellular application of ETA and ETB receptor antagonists did not. These data suggest that 1) the endothelin receptor in the cardiac nuclear membranes is ETB, 2) ETB traffics directly to the nuclear membrane after biosynthesis, 3) exogenous endothelins are not ligands for ETB on nuclear membranes, and 4) ETB associated with the nuclear membranes regulates nuclear Ca(2+) signaling.


Assuntos
Cálcio/metabolismo , Endotelinas/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Miócitos Cardíacos/metabolismo , Animais , Aorta/citologia , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Imunofluorescência , Immunoblotting , Imunoprecipitação , Microscopia Confocal , Miócitos Cardíacos/efeitos dos fármacos , Membrana Nuclear/metabolismo , Ratos , Receptores de Endotelina/metabolismo , Rianodina/farmacologia
20.
J Am Coll Cardiol ; 62(1): 68-77, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23583240

RESUMO

OBJECTIVES: The goal of this study was to assess mechanisms underlying atrial fibrillation (AF) promotion by exercise training in an animal model. BACKGROUND: High-level exercise training promotes AF, but the underlying mechanisms are unclear. METHODS: AF susceptibility was assessed by programmed stimulation in rats after 8 (Ex8) and 16 (Ex16) weeks of daily 1-h treadmill training, along with 4 and 8 weeks after exercise cessation and time-matched sedentary (Sed) controls. Structural remodeling was evaluated by using serial echocardiography and histopathology, autonomic nervous system with pharmacological tools, acetylcholine-regulated potassium current (IKACh) with patch clamp recording, messenger ribonucleic acid expression with quantitative polymerase chain reaction, and regulators of G protein-signaling (RGS) 4 function in knockout mice. RESULTS: AF inducibility increased after 16 weeks of training (e.g., AF >30 s in 64% of Ex16 rats vs 15% of Sed rats; p < 0.01) and rapidly returned to baseline levels with detraining. Atropine restored sinus rhythm in 5 of 5 Ex rats with AF sustained >15 min. Atrial dilation and fibrosis developed after 16 weeks of training and failed to fully recover with exercise cessation. Parasympathetic tone was increased in Ex16 rats and normalized within 4 weeks of detraining. Baroreflex heart rate responses to phenylephrine-induced blood pressure elevation and IKACh sensitivity to carbachol were enhanced in Ex16 rats, implicating both central and end-organ mechanisms in vagal enhancement. Ex rats showed unchanged cardiac adrenergic and cholinergic receptor and IKACh-subunit gene expression, but significant messenger ribonucleic acid downregulation of IKACh-inhibiting RGS proteins was present at 16 weeks. RGS4 knockout mice showed significantly enhanced sensitivity to AF induction in the presence of carbachol. CONCLUSIONS: Chronic endurance exercise increased AF susceptibility in rats, with autonomic changes, atrial dilation, and fibrosis identified as potential mechanistic contributors. Vagal promotion is particularly important and occurs via augmented baroreflex responsiveness and increased cardiomyocyte sensitivity to cholinergic stimulation, possibly due to RGS protein downregulation.


Assuntos
Fibrilação Atrial/fisiopatologia , Teste de Esforço/métodos , Condicionamento Físico Animal/métodos , Condicionamento Físico Animal/fisiologia , Resistência Física/fisiologia , Animais , Fibrilação Atrial/etiologia , Modelos Animais de Doenças , Teste de Esforço/efeitos adversos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Condicionamento Físico Animal/efeitos adversos , Distribuição Aleatória , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA