Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Am J Physiol Endocrinol Metab ; 325(5): E491-E499, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37729024

RESUMO

Biological mechanisms to promote dietary balance remain unclear. Fibroblast growth factor 21 (FGF21) has been suggested to contribute to such potential regulation considering that FGF21 1) is genetically associated with carbohydrate/sugar and protein intake in opposite directions, 2) is secreted after sugar ingestion and protein restriction, and 3) pharmacologically reduces sugar and increases protein intake in rodents. To gain insight of the nature of this potential regulation, we aimed to study macronutrient interactions in the secretory regulation of FGF21 in healthy humans. We conducted a randomized, double-blinded, crossover meal study (NCT05061485), wherein healthy volunteers consumed a sucrose drink, a sucrose + protein drink, and a sucrose + fat drink (matched sucrose content), and compared postprandial FGF21 responses between the three macronutrient combinations. Protein suppressed the sucrose-induced FGF21 secretion [incremental area under the curve (iAUC) for sucrose 484 ± 127 vs. sucrose + protein -35 ± 49 pg/mL × h, P < 0.001]. The same could not be demonstrated for fat (iAUC 319 ± 102 pg/mL × h, P = 203 for sucrose + fat vs. sucrose). We found no indications that regulators of glycemic homeostasis could explain this effect. This indicates that FGF21 responds to disproportionate intake of sucrose relative to protein acutely within a meal, and that protein outweighs sucrose in FGF21 regulation. Together with previous findings, our results suggests that FGF21 might act to promote macronutrient balance and sufficient protein intake.NEW & NOTEWORTHY Here we test the interactions between sugar, protein, and fat in human FGF21 regulation and demonstrate that protein, but not fat, suppresses sugar-induced FGF21 secretion. This indicates that protein outweighs the effects of sugar in the secretory regulation of FGF21, and could suggest that the nutrient-specific appetite-regulatory actions of FGF21 might prioritize ensuring sufficient protein intake over limiting sugar intake.


Assuntos
Dieta , Fatores de Crescimento de Fibroblastos , Humanos , Fatores de Crescimento de Fibroblastos/metabolismo , Sacarose/farmacologia , Açúcares , Período Pós-Prandial
2.
NPJ Aging ; 9(1): 7, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-37012386

RESUMO

The gut microbiota impacts systemic levels of multiple metabolites including NAD+ precursors through diverse pathways. Nicotinamide riboside (NR) is an NAD+ precursor capable of regulating mammalian cellular metabolism. Some bacterial families express the NR-specific transporter, PnuC. We hypothesized that dietary NR supplementation would modify the gut microbiota across intestinal sections. We determined the effects of 12 weeks of NR supplementation on the microbiota composition of intestinal segments of high-fat diet-fed (HFD) rats. We also explored the effects of 12 weeks of NR supplementation on the gut microbiota in humans and mice. In rats, NR reduced fat mass and tended to decrease body weight. Interestingly, NR increased fat and energy absorption but only in HFD-fed rats. Moreover, 16S rRNA gene sequencing analysis of intestinal and fecal samples revealed an increased abundance of species within Erysipelotrichaceae and Ruminococcaceae families in response to NR. PnuC-positive bacterial strains within these families showed an increased growth rate when supplemented with NR. The abundance of species within the Lachnospiraceae family decreased in response to HFD irrespective of NR. Alpha and beta diversity and bacterial composition of the human fecal microbiota were unaltered by NR, but in mice, the fecal abundance of species within Lachnospiraceae increased while abundances of Parasutterella and Bacteroides dorei species decreased in response to NR. In conclusion, oral NR altered the gut microbiota in rats and mice, but not in humans. In addition, NR attenuated body fat mass gain in rats, and increased fat and energy absorption in the HFD context.

3.
J Lipid Res ; 64(9): 100361, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36958721

RESUMO

N-acyl taurines (NATs) are bioactive lipids with emerging roles in glucose homeostasis and lipid metabolism. The acyl chains of hepatic and biliary NATs are enriched in polyunsaturated fatty acids (PUFAs). Dietary supplementation with a class of PUFAs, the omega-3 fatty acids, increases their cognate NATs in mice and humans. However, the synthesis pathway of the PUFA-containing NATs remains undiscovered. Here, we report that human livers synthesize NATs and that the acyl-chain preference is similar in murine liver homogenates. In the mouse, we found that hepatic NAT synthase activity localizes to the peroxisome and depends upon an active-site cysteine. Using unbiased metabolomics and proteomics, we identified bile acid-CoA:amino acid N-acyltransferase (BAAT) as the likely hepatic NAT synthase in vitro. Subsequently, we confirmed that BAAT knockout livers lack up to 90% of NAT synthase activity and that biliary PUFA-containing NATs are significantly reduced compared with wildtype. In conclusion, we identified the in vivo PUFA-NAT synthase in the murine liver and expanded the known substrates of the bile acid-conjugating enzyme, BAAT, beyond classic bile acids to the synthesis of a novel class of bioactive lipids.


Assuntos
Ácidos e Sais Biliares , Ácidos Graxos Ômega-3 , Camundongos , Humanos , Animais , Ácidos e Sais Biliares/metabolismo , Taurina/metabolismo , Fígado/metabolismo , Ácidos Graxos Insaturados/metabolismo , Aciltransferases/metabolismo , Aminoácidos/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Ômega-3/metabolismo
4.
Diabetes Obes Metab ; 25(6): 1632-1637, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36781820

RESUMO

AIM: Liraglutide treatment is associated with gallbladder-related disorders and has been shown to delay postprandial gallbladder refilling. The gut hormones cholecystokinin (CCK), fibroblast growth factor 19 (FGF19) and glucagon-like peptide 2 (GLP-2), are known to regulate gallbladder motility and may be implicated in gallbladder-related disorders associated with liraglutide treatment. MATERIALS AND METHODS: In a double-blind, 12-week trial, 52 participants [50% male, age 47.6 ± 10.0 years, body mass index 32.6 ± 3.4 kg/m2 (mean ± standard deviation)] with obesity were randomized 1:1 to once-daily subcutaneous liraglutide (escalated from 0.6 mg to 3.0 mg once-daily) or placebo. During liquid meal tests performed at baseline, after the first dose and following 12 weeks of treatment, we evaluated postprandial gallbladder dynamics and plasma responses of CCK, FGF19 and GLP-2. RESULTS: Liraglutide reduced postprandial FGF19 after the first dose [area under the curve (AUC)0-240 min 24.8 vs. 48.0 min × ng/ml, treatment ratio (TR) (95% confidence interval) 0.52 (0.39; 0.69)] and following 12 weeks of treatment [AUC0-240 min 33.7 vs. 48.5 ng/ml × min, TR 0.69 (0.52; 0.93)]. Liraglutide also reduced postprandial GLP-2 responses (AUC0-240 min 3650 vs. 4894 min × pmol/L, TR 0.75 (0.62; 0.90)] following the first dose as well as after 12 weeks [AUC0-240 min 3760 vs. 4882 min × pmol/L, TR 0.77 (0.60; 0.99)]. Liraglutide increased postprandial responses of CCK after the first dose [AUC0-240 min 762 vs. 670 min × pmol/L; TR 1.14 (0.97; 1.33)] and following 12 weeks of treatment [AUC0-240 min 873 vs. 628 min × pmol/L; TR 1.39 (1.12; 1.73)]. CONCLUSION: Compared with placebo, treatment with liraglutide decreased postprandial FGF19 and GLP-2 concentrations and increased postprandial CCK concentrations, which may explain the delayed postprandial gallbladder refilling observed in individuals with obesity treated with liraglutide.


Assuntos
Diabetes Mellitus Tipo 2 , Liraglutida , Humanos , Masculino , Adulto , Pessoa de Meia-Idade , Feminino , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Vesícula Biliar/metabolismo , Diabetes Mellitus Tipo 2/complicações , Obesidade/complicações , Índice de Massa Corporal , Período Pós-Prandial , Método Duplo-Cego , Glicemia/metabolismo
5.
Am J Physiol Gastrointest Liver Physiol ; 324(5): G378-G388, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36852934

RESUMO

Fibroblast growth factor 21 (FGF21) plays a key role in hepatic lipid metabolism and long-acting FGF21 analogs have emerged as promising drug candidates for the treatment of nonalcoholic steatohepatitis (NASH). It remains to characterize this drug class in translational animal models that recapitulate the etiology and hallmarks of human disease. To this end, we evaluated the long-acting FGF21 analog PF-05231023 in the GAN (Gubra Amylin NASH) diet-induced obese (DIO) and biopsy-confirmed mouse model of NASH. Male C57BL/6J mice were fed the GAN diet high in fat, fructose, and cholesterol for 34 wk before the start of the study. GAN DIO-NASH mice with biopsy-confirmed NAFLD Activity Score (NAS ≥5) and fibrosis (stage ≥F1) were biweekly administered with PF-05231023 (10 mg/kg sc) or vehicle (sc) for 12 wk. Vehicle-dosed chow-fed C57BL/6J mice served as healthy controls. Pre-to-post liver biopsy histopathological scoring was performed for within-subject evaluation of NAFLD Activity Score (NAS) and fibrosis stage. Terminal endpoints included quantitative liver histology and transcriptome signatures as well as blood and liver biochemistry. PF-05231023 significantly reduced body weight, hepatomegaly, plasma transaminases, and plasma/liver lipids in GAN DIO-NASH mice. Notably, PF-05231023 reduced both NAS (≥2-point improvement) and fibrosis stage (1-point improvement). Improvements in NASH and fibrosis severity were supported by reduced quantitative histological markers of steatosis, inflammation, and fibrogenesis as well as improvements in disease-associated liver transcriptome signatures. In conclusion, PF-05231023 reduces NASH and fibrosis severity in a translational biopsy-confirmed mouse model of NASH, supporting development of FGF21 analogs for the treatment of NASH.NEW & NOTEWORTHY It is unclear if long-acting FGF21 analogs have antifibrotic efficacy in NASH. We therefore profiled the clinically relevant FGF21 analog PF-05231023 in a translational diet-induced obese and biopsy-confirmed mouse model of NASH. We found PF-05231023 to exert hepatoprotective effects as indicated by notable improvements in plasma markers and histological hallmarks of NASH, including improved fibrosis stage. Collectively, the present study supports the continued exploration of long-acting FGF21 analogs for the treatment of NASH and other fibrotic diseases.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Masculino , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Cirrose Hepática/metabolismo , Camundongos Endogâmicos C57BL , Fígado/metabolismo , Obesidade/metabolismo , Dieta , Biópsia , Modelos Animais de Doenças , Dieta Hiperlipídica/efeitos adversos
6.
Diabetes Obes Metab ; 24(11): 2192-2202, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35775631

RESUMO

AIM: To evaluate the effect of curcumin treatment on hepatic fat content in obese individuals. MATERIALS AND METHODS: In a double-blind, parallel-group trial, 37 obese, non-diabetic individuals were randomized to placebo or curcumin treatment for 6 weeks. Curcumin was dosed as lecithin-formulated tablet; 200 mg twice daily. The primary endpoint was hepatic fat content as assessed by magnetic resonance spectroscopy (MRS). Other endpoints included anthropometric measurements, hepatic biomarkers including FibroScan measurements, metabolic variables, inflammation markers, appetite measures and ad libitum food intake. RESULTS: Baseline characteristics (mean ± SD) were age 46 ± 14 years, hepatic fat content 12.2% ± 8.8% points, body mass index 38.8 ± 6.1 kg/m2 and waist circumference 125.8 ± 12.3 cm. After 6 weeks of treatment with curcumin, hepatic fat content was changed by -0.86% points (95% CI -3.65; 1.94) compared with 0.71% points (95% CI - 2.08; 3.51) with placebo, thus resulting in a non-significant estimated treatment difference of -1.57% points (95% CI -5.36; 2.22, P = .412). Compared with placebo, curcumin treatment caused small reductions in fasting plasma glucose (estimated treatment difference [ETD] - 0.24 mmol/L [95% CI -0.45; -0.03]), triglycerides (ETD [percentage change] -20.22% [95% CI -33.21; -6.03]) and gamma glutamyltransferase (ETD [percentage change] -15.70% [95% CI -23.32; -7.32]), but except for gamma glutamyltransferase, none of these differences remained statistically significant after adjusting for multiple testing. Treatment was well tolerated. CONCLUSIONS: Compared with placebo, curcumin treatment for 6 weeks had no significant effect on MRS-assessed hepatic fat content in obese individuals with primarily mild steatosis. Curcumin was well tolerated.


Assuntos
Curcumina , Adulto , Glicemia , Curcumina/farmacologia , Curcumina/uso terapêutico , Método Duplo-Cego , Humanos , Lecitinas , Pessoa de Meia-Idade , Obesidade/complicações , Obesidade/tratamento farmacológico , Triglicerídeos/metabolismo , gama-Glutamiltransferase
7.
Diabetologia ; 65(6): 1018-1031, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35325259

RESUMO

AIM/HYPOTHESIS: Urocortin-3 (UCN3) is a glucoregulatory peptide produced in the gut and pancreatic islets. The aim of this study was to clarify the acute effects of UCN3 on glucose regulation following an oral glucose challenge and to investigate the mechanisms involved. METHODS: We studied the effect of UCN3 on blood glucose, gastric emptying, glucose absorption and secretion of gut and pancreatic hormones in male rats. To supplement these physiological studies, we mapped the expression of UCN3 and the UCN3-sensitive receptor, type 2 corticotropin-releasing factor receptor (CRHR2), by means of fluorescence in situ hybridisation and by gene expression analysis. RESULTS: In rats, s.c. administration of UCN3 strongly inhibited gastric emptying and glucose absorption after oral administration of glucose. Direct inhibition of gastrointestinal motility may be responsible because UCN3's cognate receptor, CRHR2, was detected in gastric submucosal plexus and in interstitial cells of Cajal. Despite inhibited glucose absorption, post-challenge blood glucose levels matched those of rats given vehicle in the low-dose UCN3 group, because UCN3 concomitantly inhibited insulin secretion. Higher UCN3 doses did not further inhibit gastric emptying, but the insulin inhibition progressed resulting in elevated post-challenge glucose and lipolysis. Incretin hormones and somatostatin (SST) secretion from isolated perfused rat small intestine was unaffected by UCN3 infusion; however, UCN3 infusion stimulated secretion of somatostatin from delta cells in the isolated perfused rat pancreas which, unlike alpha cells and beta cells, expressed Crhr2. Conversely, acute antagonism of CRHR2 signalling increased insulin secretion by reducing SST signalling. Consistent with these observations, acute drug-induced inhibition of CRHR2 signalling improved glucose tolerance in rats to a similar degree as administration of glucagon-like peptide-1. UCN3 also powerfully inhibited glucagon secretion from isolated perfused rat pancreas (perfused with 3.5 mmol/l glucose) in a SST-dependent manner, suggesting that UCN3 may be involved in glucose-induced inhibition of glucagon secretion. CONCLUSIONS/INTERPRETATION: Our combined data indicate that UCN3 is an important glucoregulatory hormone that acts through regulation of gastrointestinal and pancreatic functions.


Assuntos
Ilhotas Pancreáticas , Urocortinas , Animais , Glicemia/metabolismo , Glucagon/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Masculino , Ratos , Somatostatina/metabolismo , Urocortinas/metabolismo
8.
Cell Metab ; 34(2): 317-328.e6, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35108517

RESUMO

Excessive alcohol consumption is a major health and social issue in our society. Pharmacologic administration of the endocrine hormone fibroblast growth factor 21 (FGF21) suppresses alcohol consumption through actions in the brain in rodents, and genome-wide association studies have identified single nucleotide polymorphisms in genes involved with FGF21 signaling as being associated with increased alcohol consumption in humans. However, the neural circuit(s) through which FGF21 signals to suppress alcohol consumption are unknown, as are its effects on alcohol consumption in higher organisms. Here, we demonstrate that administration of an FGF21 analog to alcohol-preferring non-human primates reduces alcohol intake by 50%. Further, we reveal that FGF21 suppresses alcohol consumption through a projection-specific subpopulation of KLB-expressing neurons in the basolateral amygdala. Our results illustrate how FGF21 suppresses alcohol consumption through a specific population of neurons in the brain and demonstrate its therapeutic potential in non-human primate models of excessive alcohol consumption.


Assuntos
Fatores de Crescimento de Fibroblastos , Estudo de Associação Genômica Ampla , Consumo de Bebidas Alcoólicas , Animais , Sistema Endócrino/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo
9.
PeerJ ; 10: e12755, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35111398

RESUMO

BACKGROUND: Fibroblast growth factor 21 (FGF21) treatment improves metabolic homeostasis in diverse species, including humans. Physiologically, plasma FGF21 levels increase modestly after glucose ingestion, but it is unclear whether this is mediated by glucose itself or due to a secondary effect of postprandial endocrine responses. A refined understanding of the mechanisms that control FGF21 release in humans may accelerate the development of small-molecule FGF21 secretagogues to treat metabolic disease. This study aimed to determine whether FGF21 secretion is stimulated by elevations in plasma glucose, insulin, or glucagon-like peptide-1 (GLP-1) in humans. METHODS: Three groups of ten healthy participants were included in a parallel-group observational study. Group A underwent a hyperglycemic infusion; Group B underwent a 40 mU/m2/min hyperinsulinemic euglycemic clamp; Group C underwent two pancreatic clamps (to suppress endogenous insulin secretion) with euglycemic and hyperglycemic stages with an infusion of either saline or 0.5 pmol/kg/min GLP-1. Plasma FGF21 concentrations were measured at baseline and during each clamp stage by ELISA. RESULTS: Plasma FGF21 was unaltered during hyperglycemic infusion and hyperinsulinemic euglycemic clamps, compared to baseline. FGF21 was, however, increased by hyperglycemia under pancreatic clamp conditions (P < 0.05), while GLP-1 infusion under pancreatic clamp conditions did not change circulating FGF21 levels. CONCLUSION: Increases in plasma FGF21 are likely driven directly by changes in plasma glucose independent of changes in insulin or GLP-1 secretion. Ecologically valid postprandial investigations are now needed to confirm our observations from basic science infusion models.


Assuntos
Glucose , Insulina , Humanos , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Glicemia , Fragmentos de Peptídeos , Insulina Regular Humana
10.
Gastroenterology ; 162(4): 1171-1182.e3, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34914943

RESUMO

BACKGROUND & AIMS: The sucrase-isomaltase (SI) c.273_274delAG loss-of-function variant is common in Arctic populations and causes congenital sucrase-isomaltase deficiency, which is an inability to break down and absorb sucrose and isomaltose. Children with this condition experience gastrointestinal symptoms when dietary sucrose is introduced. We aimed to describe the health of adults with sucrase-isomaltase deficiency. METHODS: The association between c.273_274delAG and phenotypes related to metabolic health was assessed in 2 cohorts of Greenlandic adults (n = 4922 and n = 1629). A sucrase-isomaltase knockout (Sis-KO) mouse model was used to further elucidate the findings. RESULTS: Homozygous carriers of the variant had a markedly healthier metabolic profile than the remaining population, including lower body mass index (ß [standard error], -2.0 [0.5] kg/m2; P = 3.1 × 10-5), body weight (-4.8 [1.4] kg; P = 5.1 × 10-4), fat percentage (-3.3% [1.0%]; P = 3.7 × 10-4), fasting triglyceride (-0.27 [0.07] mmol/L; P = 2.3 × 10-6), and remnant cholesterol (-0.11 [0.03] mmol/L; P = 4.2 × 10-5). Further analyses suggested that this was likely mediated partly by higher circulating levels of acetate observed in homozygous carriers (ß [standard error], 0.056 [0.002] mmol/L; P = 2.1 × 10-26), and partly by reduced sucrose uptake, but not lower caloric intake. These findings were verified in Sis-KO mice, which, compared with wild-type mice, were leaner on a sucrose-containing diet, despite similar caloric intake, had significantly higher plasma acetate levels in response to a sucrose gavage, and had lower plasma glucose level in response to a sucrose-tolerance test. CONCLUSIONS: These results suggest that sucrase-isomaltase constitutes a promising drug target for improvement of metabolic health, and that the health benefits are mediated by reduced dietary sucrose uptake and possibly also by higher levels of circulating acetate.


Assuntos
Sacarose Alimentar , Complexo Sacarase-Isomaltase , Acetatos , Animais , Erros Inatos do Metabolismo dos Carboidratos , Sacarose Alimentar/efeitos adversos , Humanos , Camundongos , Oligo-1,6-Glucosidase , Complexo Sacarase-Isomaltase/deficiência , Complexo Sacarase-Isomaltase/genética , Complexo Sacarase-Isomaltase/metabolismo
11.
Nutrients ; 13(11)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34836096

RESUMO

The liver-derived hormone fibroblast growth factor 21 (FGF21) has recently been linked to preference for sweet-tasting food. We hypothesized, that surgery-induced changes in FGF21 could mediate the reduction in sweet food intake and preference following bariatric surgery. Forty participants (35 females) with severe obesity (BMI ≥ 35 kg/m2) scheduled for roux-en-y gastric bypass (n = 30) or sleeve gastrectomy (n = 10) were included. Pre- and postprandial responses of intact plasma FGF21 as well as intake of sweet-tasting food assessed at a buffet meal test, the hedonic evaluation of sweet taste assessed using an apple juice with added sucrose and visual analog scales, and sweet taste sensitivity were assessed before and 6 months after bariatric surgery. In a cross-sectional analysis pre-surgery, pre- and postprandial intact FGF21 levels were negatively associated with the hedonic evaluation of a high-sucrose juice sample (p = 0.03 and p = 0.02). However, no changes in pre- (p = 0.24) or postprandial intact FGF21 levels were found 6 months after surgery (p = 0.11), and individual pre- to postoperative changes in pre- and postprandial intact FGF21 levels were not found to be associated with changes in intake of sweet foods, the hedonic evaluation of sweet taste or sweet taste sensitivity (all p ≥ 0.10). In conclusion, we were not able to show an effect of bariatric surgery on circulating FGF21, and individual postoperative changes in FGF21 were not found to mediate an effect of surgery on sweet food intake and preference.


Assuntos
Cirurgia Bariátrica , Fatores de Crescimento de Fibroblastos/sangue , Preferências Alimentares/fisiologia , Obesidade Mórbida/sangue , Paladar/genética , Adulto , Estudos Transversais , Sacarose Alimentar/análise , Ingestão de Alimentos/genética , Ingestão de Alimentos/psicologia , Feminino , Humanos , Masculino , Obesidade Mórbida/genética , Obesidade Mórbida/cirurgia , Filosofia , Período Pós-Operatório , Período Pós-Prandial , Período Pré-Operatório , Estudos Prospectivos
12.
J Biol Chem ; 297(6): 101388, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34762911

RESUMO

Nicotinamide phosphoribosyltransferase (NAMPT) converts nicotinamide to NAD+. As low hepatic NAD+ levels have been linked to the development of nonalcoholic fatty liver disease, we hypothesized that ablation of hepatic Nampt would affect susceptibility to liver injury in response to diet-induced metabolic stress. Following 3 weeks on a low-methionine and choline-free 60% high-fat diet, hepatocyte-specific Nampt knockout (HNKO) mice accumulated less triglyceride than WT littermates but had increased histological scores for liver inflammation, necrosis, and fibrosis. Surprisingly, liver injury was also observed in HNKO mice on the purified control diet. This HNKO phenotype was associated with decreased abundance of mitochondrial proteins, especially proteins involved in oxidoreductase activity. High-resolution respirometry revealed lower respiratory capacity in purified control diet-fed HNKO liver. In addition, fibrotic area in HNKO liver sections correlated negatively with hepatic NAD+, and liver injury was prevented by supplementation with NAD+ precursors nicotinamide riboside and nicotinic acid. MS-based proteomic analysis revealed that nicotinamide riboside supplementation rescued hepatic levels of oxidoreductase and OXPHOS proteins. Finally, single-nucleus RNA-Seq showed that transcriptional changes in the HNKO liver mainly occurred in hepatocytes, and changes in the hepatocyte transcriptome were associated with liver necrosis. In conclusion, HNKO livers have reduced respiratory capacity, decreased abundance of mitochondrial proteins, and are susceptible to fibrosis because of low NAD+ levels. Our data suggest a critical threshold level of hepatic NAD+ that determines the predisposition to liver injury and supports that NAD+ precursor supplementation can prevent liver injury and nonalcoholic fatty liver disease progression.


Assuntos
Hepatócitos/metabolismo , Mitocôndrias Hepáticas/metabolismo , NAD/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Citocinas/deficiência , Citocinas/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/genética , NAD/genética , Nicotinamida Fosforribosiltransferase/deficiência , Nicotinamida Fosforribosiltransferase/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Fosforilação Oxidativa , Fenótipo
13.
PeerJ ; 9: e11174, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33954037

RESUMO

BACKGROUND: Despite a consistent link between obesity and increased circulating levels of fibroblast growth factor-21 (FGF21), the effect of weight-loss interventions on FGF21 is not clear. We aimed to determine the short- and long-term effects of Roux-en-Y gastric bypass (RYGB) on intact plasma FGF21 levels and to test the hypothesis that RYGB, but not diet-induced weight loss, increases fasting and postprandial responses of FGF21. METHOD: Twenty-eight participants with obesity followed a low-calorie diet for 11 weeks. The 28 participants were randomized to undergo RYGB surgery at week 8 (RYGB group, n = 14), or to a control group scheduled for surgery at week 12 (n = 14). Fasting levels of intact, biologically active FGF21 (amino acids 1-181) and its postprandial responses to a mixed meal were assessed at week 7 and 11, and 78 weeks (18 months) after RYGB. RESULTS: At week 11 (3 weeks after RYGB), postprandial responses of intact FGF21 were enhanced in participants undergoing surgery at week 8 (change from week 7 to 11: P = 0.02), whereas no change was found in non-operated control participants in similar negative energy balance (change from week 7 to 11: P = 0.81). However, no between-group difference was found (P = 0.27 for the group-week-time interaction). Fasting, as well as postprandial responses in intact FGF21, were unchanged 18 months after RYGB when both the RYGB and control group were collapsed together (change from week 7 to 78 weeks after RYGB: P = 0.17). CONCLUSION: Postprandial intact FGF21 levels were enhanced acutely after RYGB whereas no signs of sustained changes were found 18 months after surgery. When comparing the acute effect of RYGB with controls in similar negative energy balance, we failed to detect any significant differences between groups, probably due to the small sample size and large inter-individual variations, especially in response to surgery.

14.
Eur J Endocrinol ; 185(1): 23-32, 2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-33886497

RESUMO

AIMS/HYPOTHESIS: Metabolic effects of intermittent unhealthy lifestyle in young adults are poorly studied. We investigated the gluco-metabolic and hepatic effects of participation in Roskilde Festival (1 week of binge drinking and junk food consumption) in young, healthy males. METHODS: Fourteen festival participants (FP) were studied before, during and after 1 week's participation in Roskilde Festival. Fourteen matched controls (CTRL) who did not participate in Roskilde Festival or change their lifestyle in other ways were investigated along a similar timeline. RESULTS: The FP group consumed more alcohol compared to their standard living conditions (2.0 ± 3.9 vs 16.3 ± 8.3 units/day, P < 0.001). CTRLs did not change their alcohol consumption. AUC for glucose during OGTT did not change in either group. C-peptide responses increased in the FP group (206 ± 24 vs 236 ± 17 min × nmol/L, P = 0.052) and the Matsuda index of insulin sensitivity decreased (6.2 ± 2.4 vs 4.7 ± 1.4, P = 0.054). AUC for glucagon during oral glucose tolerance test (OGTT) increased in the FP group (1037 ± 90 vs 1562 ± 195 min × pmol/L, P = 0.003) together with fasting fibroblast growth factor 21 (FGF21) (62 ± 30 vs 132 ± 72 pmol/L, P < 0.001), growth differentiation factor 15 (GDF5) (276 ± 78 vs 330 ± 83 pg/mL, P = 0.009) and aspartate aminotransferase (AST) levels (37.6 ± 6.8 vs 42.4 ± 11 U/L, P = 0.043). Four participants (29%) developed ultrasound-detectable steatosis and a mean strain elastography-assessed liver stiffness increased (P = 0.026) in the FP group. CONCLUSIONS/INTERPRETATION: Participation in Roskilde Festival did not affect oral glucose tolerance but was associated with a reduction in insulin sensitivity, increases in glucagon, FGF21, GDF15 and AST and lead to increased liver stiffness and, in 29% of the participants, ultrasound-detectable hepatic steatosis.


Assuntos
Aspartato Aminotransferases/metabolismo , Consumo Excessivo de Bebidas Alcoólicas/metabolismo , Glicemia/metabolismo , Dieta , Fast Foods , Fígado Gorduroso/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Adulto , Peptídeo C/metabolismo , Proteína C-Reativa/metabolismo , Dinamarca , Técnicas de Imagem por Elasticidade , Fígado Gorduroso/diagnóstico por imagem , Glucagon/metabolismo , Teste de Tolerância a Glucose , Férias e Feriados , Humanos , Resistência à Insulina , Fígado/diagnóstico por imagem , Masculino , Adulto Jovem
15.
J Clin Invest ; 131(6)2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33507883

RESUMO

Omega-3 fatty acids from fish oil reduce triglyceride levels in mammals, yet the mechanisms underlying this effect have not been fully clarified, despite the clinical use of omega-3 ethyl esters to treat severe hypertriglyceridemia and reduce cardiovascular disease risk in humans. Here, we identified in bile a class of hypotriglyceridemic omega-3 fatty acid-derived N-acyl taurines (NATs) that, after dietary omega-3 fatty acid supplementation, increased to concentrations similar to those of steroidal bile acids. The biliary docosahexaenoic acid-containing (DHA-containing) NAT C22:6 NAT was increased in human and mouse plasma after dietary omega-3 fatty acid supplementation and potently inhibited intestinal triacylglycerol hydrolysis and lipid absorption. Supporting this observation, genetic elevation of endogenous NAT levels in mice impaired lipid absorption, whereas selective augmentation of C22:6 NAT levels protected against hypertriglyceridemia and fatty liver. When administered pharmacologically, C22:6 NAT accumulated in bile and reduced high-fat diet-induced, but not sucrose-induced, hepatic lipid accumulation in mice, suggesting that C22:6 NAT is a negative feedback mediator that limits excess intestinal lipid absorption. Thus, biliary omega-3 NATs may contribute to the hypotriglyceridemic mechanism of action of fish oil and could influence the design of more potent omega-3 fatty acid-based therapeutics.


Assuntos
Ácidos Graxos Ômega-3/administração & dosagem , Hipertrigliceridemia/dietoterapia , Triglicerídeos/metabolismo , Amidoidrolases/deficiência , Amidoidrolases/genética , Amidoidrolases/metabolismo , Animais , Bile/metabolismo , Modelos Animais de Doenças , Ácidos Docosa-Hexaenoicos/análogos & derivados , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/prevenção & controle , Humanos , Hipertrigliceridemia/metabolismo , Hipolipemiantes/administração & dosagem , Hipolipemiantes/metabolismo , Absorção Intestinal/efeitos dos fármacos , Metabolismo dos Lipídeos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutação Puntual , Taurina/análogos & derivados , Taurina/metabolismo
16.
Mol Metab ; 42: 101080, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32937194

RESUMO

OBJECTIVE: Glucagon is well known to regulate blood glucose but may be equally important for amino acid metabolism. Plasma levels of amino acids are regulated by glucagon-dependent mechanism(s), while amino acids stimulate glucagon secretion from alpha cells, completing the recently described liver-alpha cell axis. The mechanisms underlying the cycle and the possible impact of hepatic steatosis are unclear. METHODS: We assessed amino acid clearance in vivo in mice treated with a glucagon receptor antagonist (GRA), transgenic mice with 95% reduction in alpha cells, and mice with hepatic steatosis. In addition, we evaluated urea formation in primary hepatocytes from ob/ob mice and humans, and we studied acute metabolic effects of glucagon in perfused rat livers. We also performed RNA sequencing on livers from glucagon receptor knock-out mice and mice with hepatic steatosis. Finally, we measured individual plasma amino acids and glucagon in healthy controls and in two independent cohorts of patients with biopsy-verified non-alcoholic fatty liver disease (NAFLD). RESULTS: Amino acid clearance was reduced in mice treated with GRA and mice lacking endogenous glucagon (loss of alpha cells) concomitantly with reduced production of urea. Glucagon administration markedly changed the secretion of rat liver metabolites and within minutes increased urea formation in mice, in perfused rat liver, and in primary human hepatocytes. Transcriptomic analyses revealed that three genes responsible for amino acid catabolism (Cps1, Slc7a2, and Slc38a2) were downregulated both in mice with hepatic steatosis and in mice with deletion of the glucagon receptor. Cultured ob/ob hepatocytes produced less urea upon stimulation with mixed amino acids, and amino acid clearance was lower in mice with hepatic steatosis. Glucagon-induced ureagenesis was impaired in perfused rat livers with hepatic steatosis. Patients with NAFLD had hyperglucagonemia and increased levels of glucagonotropic amino acids, including alanine in particular. Both glucagon and alanine levels were reduced after diet-induced reduction in Homeostatic Model Assessment for Insulin Resistance (HOMA-IR, a marker of hepatic steatosis). CONCLUSIONS: Glucagon regulates amino acid metabolism both non-transcriptionally and transcriptionally. Hepatic steatosis may impair glucagon-dependent enhancement of amino acid catabolism.


Assuntos
Aminoácidos/metabolismo , Fígado Gorduroso/fisiopatologia , Glucagon/metabolismo , Adulto , Animais , Glicemia/metabolismo , Fígado Gorduroso/metabolismo , Feminino , Glucagon/fisiologia , Células Secretoras de Glucagon/metabolismo , Glucose/metabolismo , Hepatócitos/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina/fisiologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ratos , Ratos Wistar , Receptores de Glucagon/antagonistas & inibidores , Receptores de Glucagon/metabolismo , Ureia/metabolismo
17.
Cell Metab ; 32(2): 273-286.e6, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32640184

RESUMO

Fibroblast growth factor 21 (FGF21) is an endocrine hormone produced by the liver that regulates nutrient and metabolic homeostasis. FGF21 production is increased in response to macronutrient imbalance and signals to the brain to suppress sugar intake and sweet-taste preference. However, the central targets mediating these effects have been unclear. Here, we identify FGF21 target cells in the hypothalamus and reveal that FGF21 signaling to glutamatergic neurons is both necessary and sufficient to mediate FGF21-induced sugar suppression and sweet-taste preference. Moreover, we show that FGF21 acts directly in the ventromedial hypothalamus (VMH) to specifically regulate sucrose intake, but not non-nutritive sweet-taste preference, body weight, or energy expenditure. Finally, our data demonstrate that FGF21 affects neuronal activity by increasing activation and excitability of neurons in the VMH. Thus, FGF21 signaling to glutamatergic neurons in the VMH is an important component of the neurocircuitry that functions to regulate sucrose intake.


Assuntos
Carboidratos/administração & dosagem , Fatores de Crescimento de Fibroblastos/metabolismo , Neurônios/metabolismo , Animais , Ingestão de Energia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais
18.
Molecules ; 25(10)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443832

RESUMO

Farnesoid X receptor (FXR) and Takeda G-protein coupled receptor 5 (TGR5) are the two known bile acid (BA) sensitive receptors and are expressed in the intestine and liver as well as in extra-enterohepatic tissues. The physiological effects of extra-enterohepatic FXR/TRG5 remain unclear. Further, the extent BAs escape liver reabsorption and how they interact with extra-enterohepatic FXR/TGR5 is understudied. We investigated if hepatic BA reuptake differed between BAs agonistic for FXR and TGR5 compared to non-agonists in the rat. Blood was collected from the portal vein and inferior caval vein from anesthetized rats before and 5, 20, 30, and 40 min post stimulation with sulfated cholecystokinin-8. Plasma concentrations of 20 different BAs were assessed by liquid chromatography coupled to mass spectrometry. Total portal vein BA AUC was 3-4 times greater than in the vena cava inferior (2.7 ± 0.6 vs. 0.7 ± 0.2 mM x min, p < 0.01, n = 8) with total unconjugated BAs being 2-3-fold higher than total conjugated BAs (AUC 8-10 higher p < 0.05 for both). However, in both cases, absolute ratios varied greatly among different BAs. The average hepatic reuptake of BAs agonistic for FXR/TGR5 was similar to non-agonists. However, as the sum of non-agonist BAs in vena portae was 2-3-fold higher than the sum agonist (p < 0.05), the peripheral BA pool was composed mostly of non-agonist BAs. We conclude that hepatic BA reuptake varies substantially by type and does not favor FXR/TGR5 BAs agonists.


Assuntos
Ácidos e Sais Biliares/metabolismo , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Acoplados a Proteínas G/genética , Animais , Ácidos e Sais Biliares/agonistas , Ácidos e Sais Biliares/genética , Colecistocinina/farmacologia , Intestinos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Ratos
19.
Alcohol ; 87: 29-37, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32335270

RESUMO

Ethanol intake increases plasma concentrations of triglycerides and chronic ethanol use impairs lipid metabolism and causes chronic inflammation. The gut plays an important role in metabolic handling of nutrients, including lipids, and a leaky gut associated with alcohol intake, allowing inflammatory signals to the portal vein, has been proposed to constitute a mechanism by which ethanol induces hepatic inflammation. We compared the effects of enteral and parenteral administration of ethanol on a range of circulating inflammation markers (including soluble CD163, a marker of liver macrophage activation), lipids, cholecystokinin (CCK) and fibroblast growth factor 19 (FGF19) as well as gallbladder volume. On two separate and randomized study days, we subjected healthy men (n = 12) to double-blinded intragastric ethanol infusion (IGEI) and isoethanolemic intravenous ethanol infusion (IVEI). Blood was sampled and ultrasonographic evaluation of gallbladder volume was performed at frequent intervals for 4 h after initiation of ethanol administration on both days. Little or no effects were observed on plasma levels of inflammation markers during IGEI and IVEI, respectively. Circulating levels of total, low-density lipoprotein and high-density lipoprotein cholesterol decreased after ethanol administration independently of the administration form. Triglyceride and very low-density lipoprotein (VLDL) cholesterol concentrations increased more after IGEI compared to IVEI. IVEI had no effect on plasma CCK and caused an increased gallbladder volume whereas IGEI elicited a CCK response (P < 0.0001) without affecting gallbladder volume. Circulating FGF19 concentrations decreased equally in response to both ethanol administration forms. In conclusion, by evaluating a range of circulating inflammation markers during IGEI and IVEI we were not able to detect signs of systemic low-grade inflammation originating from the presence of ethanol in the gut. IVEI increased gallbladder volume whereas IGEI increased plasma CCK (with neutral effect on gallbladder volume), increased plasma VLDL cholesterol and triglyceride concentrations; indicating that the enteral route of administration may influence ethanol's effects on lipid metabolism.


Assuntos
Etanol/administração & dosagem , Vesícula Biliar , Inflamação/sangue , Lipídeos/sangue , Antígenos CD/sangue , Antígenos de Diferenciação Mielomonocítica/sangue , Biomarcadores/sangue , Colecistocinina/sangue , Estudos Cross-Over , Método Duplo-Cego , Fatores de Crescimento de Fibroblastos/sangue , Vesícula Biliar/efeitos dos fármacos , Humanos , Masculino , Receptores de Superfície Celular/sangue
20.
Acta Physiol (Oxf) ; 228(4): e13437, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31900990

RESUMO

AIM: Neurons in the arcuate nucleus of the hypothalamus are involved in regulation of food intake and energy expenditure, and dysregulation of signalling in these neurons promotes development of obesity. The role of the rate-limiting enzyme in the NAD+ salvage pathway, nicotinamide phosphoribosyltransferase (NAMPT), for regulation energy homeostasis by the hypothalamus has not been extensively studied. METHODS: We determined whether Nampt mRNA or protein levels in the hypothalamus of mice were affected by diet-induced obesity, by fasting and re-feeding, and by leptin and ghrelin treatment. Primary hypothalamic neurons were treated with FK866, a selective inhibitor of NAMPT, or rAAV carrying shRNA directed against Nampt, and levels of reactive oxygen species (ROS) and mitochondrial respiration were assessed. Fasting and ghrelin-induced food intake was measured in mice in metabolic cages after intracerebroventricular (ICV)-mediated FK866 administration. RESULTS: NAMPT levels in the hypothalamus were elevated by administration of ghrelin and leptin. In diet-induced obese mice, both protein and mRNA levels of NAMPT decreased in the hypothalamus. NAMPT inhibition in primary hypothalamic neurons significantly reduced levels of NAD+ , increased levels of ROS, and affected the expression of Agrp, Pomc and genes related to mitochondrial function. Finally, ICV-induced NAMPT inhibition by FK866 did not cause malaise or anhedonia, but completely ablated fasting- and ghrelin-induced increases in food intake. CONCLUSION: Our findings indicate that regulation of NAMPT levels in hypothalamic neurons is important for the control of fasting- and ghrelin-induced food intake.


Assuntos
Jejum/metabolismo , Grelina/metabolismo , Hipotálamo/metabolismo , Nicotinamida Fosforribosiltransferase/metabolismo , Acrilamidas/administração & dosagem , Proteína Relacionada com Agouti/genética , Proteína Relacionada com Agouti/metabolismo , Animais , Linhagem Celular , Ingestão de Alimentos , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Piperidinas/administração & dosagem , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA