Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Integr Comp Biol ; 63(6): 1266-1276, 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-37381578

RESUMO

Neural input is critical for establishing behavioral output, but understanding how neuromuscular signals give rise to behaviors remains a challenge. In squid, locomotion through jet propulsion underlies many key behaviors, and the jet is mediated by two parallel neural pathways, the giant and non-giant axon systems. Much work has been done on the impact of these two systems on jet kinematics, such as mantle muscle contraction and pressure-derived jet speed at the funnel aperture. However, little is known about any influence these neural pathways may have on the hydrodynamics of the jet after it leaves the squid and transfers momentum to the surrounding fluid for the animal to swim. To gain a more comprehensive view of squid jet propulsion, we made simultaneous measurements of neural activity, pressure inside the mantle cavity, and wake structure. By computing impulse and time-averaged forces from the wake structures of jets associated with giant or non-giant axon activity, we show that the influence of neural pathways on jet kinematics could extend to hydrodynamic impulse and force production. Specifically, the giant axon system produced jets with, on average, greater impulse magnitude than those of the non-giant system. However, non-giant impulse could exceed that of the giant system, evident by the graded range of its output in contrast to the stereotyped nature of the giant system. Our results suggest that the non-giant system offers flexibility in hydrodynamic output, while recruitment of giant axon activity can provide a reliable boost when necessary.


Assuntos
Decapodiformes , Hidrodinâmica , Animais , Decapodiformes/fisiologia , Natação/fisiologia , Locomoção/fisiologia , Axônios/fisiologia
2.
Ecol Evol ; 12(3): e8747, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35356556

RESUMO

Collective behaviors in biological systems such as coordinated movements have important ecological and evolutionary consequences. While many studies examine within-species variation in collective behavior, explicit comparisons between functionally similar species from different taxonomic groups are rare. Therefore, a fundamental question remains: how do collective behaviors compare between taxa with morphological and physiological convergence, and how might this relate to functional ecology and niche partitioning? We examined the collective motion of two ecologically similar species from unrelated clades that have competed for pelagic predatory niches for over 500 million years-California market squid, Doryteuthis opalescens (Mollusca) and Pacific sardine, Sardinops sagax (Chordata). We (1) found similarities in how groups of individuals from each species collectively aligned, measured by angular deviation, the difference between individual orientation and average group heading. We also (2) show that conspecific attraction, which we approximated using nearest neighbor distance, was greater in sardine than squid. Finally, we (3) found that individuals of each species explicitly matched the orientation of groupmates, but that these matching responses were less rapid in squid than sardine. Based on these results, we hypothesize that information sharing is a comparably important function of social grouping for both taxa. On the other hand, some capabilities, including hydrodynamically conferred energy savings and defense against predators, could stem from taxon-specific biology.

3.
Reg Environ Change ; 21(2): 35, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34720738

RESUMO

Small-scale fisheries are critically important for livelihoods around the world, particularly in tropical regions. However, climate variability and anthropogenic climate change may seriously impact small-scale fisheries by altering the abundance and distribution of target species. Social relationships between fishery users, such as fish traders, can determine how each individual responds and is affected by changes in fisheries. These informal cooperative and competitive relationships provide access, support, and incentives for fishing and affect the distribution of benefits. Yet, individuals' actions and impacts on individuals are often the primary focus of the economic analyses informing small-scale fisheries' formal management. This focus dismisses relevant social relationships. We argue that this leads to a disconnect between reality and its model representation used in formal management, which may reduce formal fisheries management's efficiency and efficacy and potentially trigger adverse consequences. Here, we examine this argument by comparing the predictions of a simple bioeconomic fishery model with those of a social-ecological model that incorporates the dynamics of cooperative relationships between fish traders. We illustrate model outcomes using an empirical case study in the Mexican Humboldt squid fishery. We find that (1) the social-ecological model with relationship dynamics substantially improves accuracy in predicting observed fishery variables to the simple bioeconomic model. (2) Income inequality outcomes are associated with changes in cooperative trade relationships. When environmental temperature is included in the model as a driver of species production dynamics, we find that climate-driven temperature variability drives a decline in catch that, in turn, reduce fishers' income. We observe an offset of this loss in income by including cooperative relationships between fish traders (oligopoly) in the model. These relationships break down following species distribution changes and result in an increase in prices fishers receive. Finally, (3) our social-ecological model simulations show that the current fishery development program, which seeks to increase fishers' income through an increase in domestic market demand, is supported by predictions from the simple bioeconomic model, may increase income inequality between fishers and traders. Our findings highlight the real and urgent need to re-think fisheries management models in the context of small-scale fisheries and climate change worldwide to encompass social relationship dynamics. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at (10.1007/s10113-021-01747-5).

4.
Cureus ; 13(2): e13110, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33692914

RESUMO

Ionizing radiation is clinically used to treat neurological problems and reduce pathological levels of neural activity in the brain, but its cellular-level mechanisms are not well understood. Although spontaneous and stimulated synaptic activity has been produced in rodents by clinically and environmentally relevant doses of radiation, the effects on basic excitability properties of neurons have seldom been reported. This study examined the effects of focused ionizing radiation on synaptic transmission and action potential generation in the squid giant-fiber system, which includes the giant synapse between a secondary interneuron and the tertiary giant motor axons. Radiation of 140-300 Gy was delivered to a stellate ganglion of a living squid over several minutes, with the contralateral stellate ganglion serving as an internal control. No qualitative changes in the efficacy of synaptic transmission were noted in conjunction with stimulation of the input to the giant synapse, although in one irradiated ganglion, the refractory period increased from about 5 ms to more than 45 seconds. Small but significant changes in the action potential recorded from the giant motor axon in response to electrical stimulation were associated with an increased maximum rate of fall and a shortened action potential duration. Other action-potential parameters, including resting potential, overshoot, the maximum rate of the rise, and the refractory period were not significantly changed. Attempts to account for the observed changes in the action potential were carried through a Hodgkin-Huxley model of the action potential. This approach suggests that an increase in the maximum voltage-gated potassium conductance of about 50% mimics the action potential shortening and increased rate of fall that was experimentally observed. We propose that such an effect could result from phosphorylation of squid potassium channels.

5.
J Exp Biol ; 223(Pt 3)2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31900349

RESUMO

An important aspect of the performance of many fast muscle fiber types is rapid excitation. Previous research on the cross-striated muscle fibers responsible for the rapid tentacle strike in squid has revealed the specializations responsible for high shortening velocity, but little is known about excitation of these fibers. Conventional whole-cell patch recordings were made from tentacle fibers and the slower obliquely striated muscle fibers of the arms. The fast-contracting tentacle fibers show an approximately 10-fold greater sodium conductance than that of the arm fibers and, unlike the arm fibers, the tentacle muscle fibers produce action potentials. In situ hybridization using an antisense probe to the voltage-dependent sodium channel present in this squid genus shows prominent expression of sodium channel mRNA in tentacle fibers but undetectable expression in arm fibers. Production of action potentials by tentacle muscle fibers and their absence in arm fibers is likely responsible for the previously reported greater twitch-tetanus ratio in the tentacle versus the arm fibers. During the rapid tentacle strike, a few closely spaced action potentials would result in maximal activation of transverse tentacle muscle. Activation of the slower transverse muscle fibers in the arms would require summation of excitatory postsynaptic potentials over a longer time, allowing the precise modulation of force required for supporting slower movements of the arms.


Assuntos
Potenciais de Ação/fisiologia , Decapodiformes/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Animais , Técnicas de Patch-Clamp , Canais de Sódio/fisiologia
6.
J Exp Biol ; 222(Pt 8)2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30936266

RESUMO

Squids display a wide range of swimming behaviors, including powerful escape jets mediated by the giant axon system. For California market squid (Doryteuthis opalescens), maintaining essential behaviors like the escape response during environmental variations poses a major challenge as this species often encounters intrusions of cold, hypoxic offshore waters in its coastal spawning habitats. To explore the effects of hypoxia on locomotion and the underlying neural mechanisms, we made in vivo recordings of giant axon activity and simultaneous pressure inside the mantle cavity during escape jets in squid exposed to acute progressive hypoxia followed by return to normal dissolved oxygen (DO) concentration (normoxia). Compared with those in normoxia (>8 mg l-1 DO), escape jets were unchanged in moderate hypoxia (4 and 2 mg l-1 DO), but giant axon activity and associated mantle contractions significantly decreased while neuromuscular latency increased under severe hypoxia (0.5 mg l-1 DO). Animals that survived exposure to severe hypoxia reliably produced escape jets under such conditions and fully recovered as more oxygen became available. The reduction in neuromuscular output under hypoxia suggests that market squid may suppress metabolic activity to maintain sufficient behavioral output, a common strategy in many hypoxia-tolerant species. The ability to recover from the deleterious effects of hypoxia suggests that this species is well adapted to cope with coastal hypoxic events that commonly occur in Monterey Bay, unless these events become more severe in the future as climate change progresses.


Assuntos
Decapodiformes/fisiologia , Oxigênio/metabolismo , Anaerobiose , Animais , Reação de Fuga , Natação
7.
J Exp Biol ; 220(Pt 24): 4669-4680, 2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29061686

RESUMO

Seemingly chaotic waves of spontaneous chromatophore activity occur in the ommastrephid squid Dosidicus gigas in the living state and immediately after surgical disruption of all known inputs from the central nervous system. Similar activity is apparent in the loliginid Doryteuthis opalescens, but only after chronic denervation of chromatophores for 5-7 days. Electrically stimulated, neurally driven activity in intact individuals of both species is blocked by tetrodotoxin (TTX), but TTX has no effect on spontaneous wave activity in either D. gigas or denervated D. opalescens Spontaneous TTX-resistant activity of this sort is therefore likely myogenic, and such activity is eliminated in both preparations by serotonin (5-HT), a known inhibitor of chromatophore activity. Immunohistochemical techniques reveal that individual axons containing L-glutamate or 5-HT (and possibly both in a minority of processes) are associated with radial muscle fibers of chromatophores in intact individuals of both species, although the area of contact between both types of axons and muscle fibers is much smaller in D. gigas Glutamatergic and serotonergic axons degenerate completely following denervation in D. opalescens Spontaneous waves of chromatophore activity in both species are thus associated with reduced (or no) serotonergic input in comparison to the situation in intact D. opalescens Such differences in the level of serotonergic inhibition are consistent with natural chromogenic behaviors in these species. Our findings also suggest that such activity might propagate via the branching distal ends of radial muscle fibers.


Assuntos
Cromatóforos/metabolismo , Decapodiformes/fisiologia , Animais , Axônios/ultraestrutura , Cromatóforos/fisiologia , Cromatóforos/ultraestrutura , Decapodiformes/metabolismo , Decapodiformes/ultraestrutura , Estimulação Elétrica , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Técnicas In Vitro , Músculos/inervação , Músculos/fisiologia , Músculos/ultraestrutura
8.
Evolution ; 69(1): 232-44, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25346116

RESUMO

Understanding the processes that generate novel adaptive phenotypes is central to evolutionary biology. We used comparative analyses to reveal the history of tetrodotoxin (TTX) resistance in TTX-bearing salamanders. Resistance to TTX is a critical component of the ability to use TTX defensively but the origin of the TTX-bearing phenotype is unclear. Skeletal muscle of TTX-bearing salamanders (modern newts, family: Salamandridae) is unaffected by TTX at doses far in excess of those that block action potentials in muscle and nerve of other vertebrates. Skeletal muscle of non-TTX-bearing salamandrids is also resistant to TTX but at lower levels. Skeletal muscle TTX resistance in the Salamandridae results from the expression of TTX-resistant variants of the voltage-gated sodium channel NaV 1.4 (SCN4a). We identified four substitutions in the coding region of salSCN4a that are likely responsible for the TTX resistance measured in TTX-bearing salamanders and variation at one of these sites likely explains variation in TTX resistance among other lineages. Our results suggest that exaptation has played a role in the evolution of the TTX-bearing phenotype and provide empirical evidence that complex physiological adaptations can arise through the accumulation of beneficial mutations in the coding region of conserved proteins.


Assuntos
Adaptação Fisiológica , Evolução Molecular , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Urodelos/genética , Potenciais de Ação , Sequência de Aminoácidos , Animais , Resistência a Medicamentos , Dados de Sequência Molecular , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Urodelos/fisiologia
9.
J Exp Biol ; 217(Pt 9): 1588-600, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24501132

RESUMO

Squid are the largest jet propellers in nature as adults, but as paralarvae they are some of the smallest, faced with the inherent inefficiency of jet propulsion at a low Reynolds number. In this study we describe the behavior and kinematics of locomotion in 1 mm paralarvae of Dosidicus gigas, the smallest squid yet studied. They swim with hop-and-sink behavior and can engage in fast jets by reducing the size of the mantle aperture during the contraction phase of a jetting cycle. We go on to explore the general effects of a variable mantle and funnel aperture in a theoretical model of jet propulsion scaled from the smallest (1 mm mantle length) to the largest (3 m) squid. Aperture reduction during mantle contraction increases propulsive efficiency at all squid sizes, although 1 mm squid still suffer from low efficiency (20%) because of a limited speed of contraction. Efficiency increases to a peak of 40% for 1 cm squid, then slowly declines. Squid larger than 6 cm must either reduce contraction speed or increase aperture size to maintain stress within maximal muscle tolerance. Ecological pressure to maintain maximum velocity may lead them to increase aperture size, which reduces efficiency. This effect might be ameliorated by nonaxial flow during the refill phase of the cycle. Our model's predictions highlight areas for future empirical work, and emphasize the existence of complex behavioral options for maximizing efficiency at both very small and large sizes.


Assuntos
Decapodiformes/fisiologia , Natação/fisiologia , Animais , Fenômenos Biomecânicos , Decapodiformes/anatomia & histologia , Modelos Teóricos
10.
Glob Chang Biol ; 20(6): 1832-43, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24443361

RESUMO

Climate-driven range shifts are ongoing in pelagic marine environments, and ecosystems must respond to combined effects of altered species distributions and environmental drivers. Hypoxic oxygen minimum zones (OMZs) in midwater environments are shoaling globally; this can affect distributions of species both geographically and vertically along with predator-prey dynamics. Humboldt (jumbo) squid (Dosidicus gigas) are highly migratory predators adapted to hypoxic conditions that may be deleterious to their competitors and predators. Consequently, OMZ shoaling may preferentially facilitate foraging opportunities for Humboldt squid. With two separate modeling approaches using unique, long-term data based on in situ observations of predator, prey, and environmental variables, our analyses suggest that Humboldt squid are indirectly affected by OMZ shoaling through effects on a primary food source, myctophid fishes. Our results suggest that this indirect linkage between hypoxia and foraging is an important driver of the ongoing range expansion of Humboldt squid in the northeastern Pacific Ocean.


Assuntos
Distribuição Animal , Mudança Climática , Decapodiformes/fisiologia , Peixes/fisiologia , Cadeia Alimentar , Animais , Modelos Biológicos , Oceano Pacífico , Dinâmica Populacional
11.
Glob Chang Biol ; 19(7): 2089-103, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23505049

RESUMO

Dosidicus gigas (jumbo or Humboldt squid) is a semelparous, major predator of the eastern Pacific that is ecologically and commercially important. In the Gulf of California, these animals mature at large size (>55 cm mantle length) in 1-1.5 years and have supported a major commercial fishery in the Guaymas Basin during the last 20 years. An El Niño event in 2009-2010, was accompanied by a collapse of this fishery, and squid in the region showed major changes in the distribution and life-history strategy. Large squid abandoned seasonal coastal-shelf habitats in 2010 and instead were found in the Salsipuedes Basin to the north, an area buffered from the effects of El Niño by tidal upwelling and a well-mixed water column. The commercial fishery also relocated to this region. Although large squid were not found in the Guaymas Basin from 2010 to 2012, small squid were abundant and matured at an unusually small mantle-length (<30 cm) and young age (approximately 6 months). Juvenile squid thus appeared to respond to El Niño with an alternative life-history trajectory in which gigantism and high fecundity in normally productive coastal-shelf habitats were traded for accelerated reproduction at small size in an offshore environment. Both small and large mature squid, were present in the Salsipuedes Basin during 2011, indicating that both life- history strategies can coexist. Hydro-acoustic data, reveal that squid biomass in this study area nearly doubled between 2010 and 2011, primarily due to a large increase in small squid that were not susceptible to the fishery. Such a climate-driven switch in size-at-maturity may allow D. gigas to rapidly adapt to and cope with El Niño. This ability is likely to be an important factor in conjunction with longerterm climate-change and the potential ecological impacts of this invasive predator on marine ecosystems.


Assuntos
Migração Animal/fisiologia , Mudança Climática , Decapodiformes/fisiologia , Comportamento Predatório/fisiologia , Aclimatação , Envelhecimento/fisiologia , Animais , Pesos e Medidas Corporais , California , Decapodiformes/crescimento & desenvolvimento , Fertilidade/fisiologia , Pesqueiros , Água do Mar/análise
12.
Ann Rev Mar Sci ; 5: 393-420, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-22809177

RESUMO

Long-term declines in oxygen concentrations are evident throughout much of the ocean interior and are particularly acute in midwater oxygen minimum zones (OMZs). These regions are defined by extremely low oxygen concentrations (<20-45 µmol kg(-1)), cover wide expanses of the ocean, and are associated with productive oceanic and coastal regions. OMZs have expanded over the past 50 years, and this expansion is predicted to continue as the climate warms worldwide. Shoaling of the upper boundaries of the OMZs accompanies OMZ expansion, and decreased oxygen at shallower depths can affect all marine organisms through multiple direct and indirect mechanisms. Effects include altered microbial processes that produce and consume key nutrients and gases, changes in predator-prey dynamics, and shifts in the abundance and accessibility of commercially fished species. Although many species will be negatively affected by these effects, others may expand their range or exploit new niches. OMZ shoaling is thus likely to have major and far-reaching consequences.


Assuntos
Ecossistema , Oceanos e Mares , Oxigênio/química , Água do Mar/química , Animais , Movimentos da Água
13.
J Exp Biol ; 215(Pt 18): 3175-90, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22915711

RESUMO

We studied the locomotion and behavior of Dosidicus gigas using pop-up archival transmitting (PAT) tags to record environmental parameters (depth, temperature and light) and an animal-borne video package (AVP) to log these parameters plus acceleration along three axes and record forward-directed video under natural lighting. A basic cycle of locomotor behavior in D. gigas involves an active climb of a few meters followed by a passive (with respect to jetting) downward glide carried out in a fins-first direction. Temporal summation of such climb-and-glide events underlies a rich assortment of vertical movements that can reach vertical velocities of 3 m s(-1). In contrast to such rapid movements, D. gigas spends more than 80% of total time gliding at a vertical velocity of essentially zero (53% at 0±0.05 m s(-1)) or sinking very slowly (28% at -0.05 to -0.15 m s(-1)). The vertical distribution of squid was compared with physical features of the local water column (temperature, oxygen and light). Oxygen concentrations of ≤20 µmol kg(-1), characteristic of the midwater oxygen minimum zone (OMZ), can influence the daytime depth of squid, but this depends on location and season, and squid can 'decouple' from this environmental feature. Light is also an important factor in determining daytime depth, and temperature can limit nighttime depth. Vertical velocities were compared over specific depth ranges characterized by large differences in dissolved oxygen. Velocities were generally reduced under OMZ conditions, with faster jetting being most strongly affected. These data are discussed in terms of increased efficiency of climb-and-glide swimming and the potential for foraging at hypoxic depths.


Assuntos
Comportamento Animal/fisiologia , Decapodiformes/fisiologia , Locomoção/fisiologia , Anaerobiose , Animais , Geografia , Luz , México , Oxigênio/análise , Estações do Ano , Natação/fisiologia , Temperatura , Fatores de Tempo
14.
J Acoust Soc Am ; 123(3): 1318-28, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18345820

RESUMO

This study presents the first target strength measurements of Dosidicus gigas, a large squid that is a key predator, a significant prey, and the target of an important fishery. Target strength of live, tethered squid was related to mantle length with values standardized to the length squared of -62.0, -67.4, -67.9, and -67.6 dB at 38, 70, 120, and 200 kHz, respectively. There were relatively small differences in target strength between dorsal and anterior aspects and none between live and freshly dead squid. Potential scattering mechanisms in squid have been long debated. Here, the reproductive organs had little effect on squid target strength. These data support the hypothesis that the pen may be an important source of squid acoustic scattering. The beak, eyes, and arms, probably via the sucker rings, also play a role in acoustic scattering though their effects were small and frequency specific. An unexpected source of scattering was the cranium of the squid which provided a target strength nearly as high as that of the entire squid though the mechanism remains unclear. Our in situ measurements of the target strength of free-swimming squid support the use of the values presented here in D. gigas assessment studies.


Assuntos
Acústica , Decapodiformes , Animais , Fenômenos Biomecânicos , Fatores de Tempo
15.
Biochemistry ; 45(47): 14212-22, 2006 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-17115716

RESUMO

We describe structural properties and biological activities of two related O-glycosylated peptide toxins isolated from injected (milked) venom of Conus striatus, a piscivorous snail that captures prey by injecting a venom that induces a violent, spastic paralysis. One 30 amino acid toxin is identified as kappaA-SIVA (termed s4a here), and another 37 amino acid toxin, s4b, corresponds to a putative peptide encoded by a previously reported cDNA. We confirm the amino acid sequences and carry out structural analyses of both mature toxins using multiple mass spectrometric techniques. These include electrospray ionization ion-trap mass spectrometry and nanoelectrospray techniques for small volume samples, as well as matrix-assisted laser desorption/ionization time of flight mass spectrometric analysis as a complementary method to assist in the determination of posttranslational modifications, including O-linked glycosylation. Physiological experiments indicate that both s4a and s4b induce intense repetitive firing of the frog neuromuscular junction, leading to a tetanic contracture in muscle fiber. These effects apparently involve modification of voltage-gated sodium channels in motor axons. Notably, application of either s4a or s4b alone mimics the biological effects of the whole injected venom on fish prey.


Assuntos
Conotoxinas/toxicidade , Caramujo Conus/química , Paralisia/induzido quimicamente , Tetania/induzido quimicamente , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Conotoxinas/isolamento & purificação , DNA Complementar , Glicosilação , Espectrometria de Massas/métodos , Dados de Sequência Molecular
16.
Biol Bull ; 209(2): 146-53, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16260774

RESUMO

Most of the more than 500 species of predatory marine snails in the genus Conus are tropical or semitropical, and nearly all are thought to be highly selective regarding type of prey. Conus californicus Hinds, 1844, is unusual in that it is endemic to the North American Pacific coast and preys on a large variety of benthic organisms, primarily worms and other molluscs, and also scavenges. We studied the feeding behavior of C. californicus in captivity and found that it regularly killed and consumed live prickleback fishes (Cebidichthys violaceus and Xiphister spp.). Predation involved two behavioral methods similar to those employed by strictly piscivorous relatives. One method utilized stings delivered by radular teeth; the other involved engulfing the prey without stinging. Both methods were commonly used in combination, and individual snails sometimes employed multiple stings to subdue a fish. During the course of the study, snails became aroused by the presence of live fish more quickly, as evidenced by more rapid initiation of hunting behavior. Despite this apparent adaptation, details of prey-capture techniques and effectiveness of stings remained similar over the same period.


Assuntos
Caramujo Conus/fisiologia , Comportamento Alimentar/fisiologia , Comportamento Predatório/fisiologia , Animais , California , Smegmamorpha , Especificidade da Espécie , Gravação em Vídeo
17.
J Exp Biol ; 208(Pt 15): 2873-83, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16043592

RESUMO

Venom peptides from two species of fish-hunting cone snails (Conus striatus and Conus catus) were characterized using microbore liquid chromatography coupled with matrix-assisted laser desorption/ionization-time of flight-mass spectrometry and electrospray ionization-ion trap-mass spectrometry. Both crude venom isolated from the venom duct and injected venom obtained by milking were studied. Based on analysis of injected venom samples from individual snails, significant intraspecific variation (i.e. between individuals) in the peptide complement is observed. The mixture of peptides in injected venom is simpler than that in the crude duct venom from the same snail, and the composition of crude venom is more consistent from snail to snail. While there is animal-to-animal variation in the peptides present in the injected venom, the composition of any individual's injected venom remains relatively constant over time in captivity. Most of the Conus striatus individuals tested injected predominantly a combination of two neuroexcitatory peptides (s4a and s4b), while a few individuals had unique injected-venom profiles consisting of a combination of peptides, including several previously characterized from the venom duct of this species. Seven novel peptides were also putatively identified based on matches of their empirically derived masses to those predicted by published cDNA sequences. Profiling injected venom of Conus catus individuals using matrix-assisted laser desorption/ionization-time of flight-mass spectrometry demonstrates that intraspecific variation in the mixture of peptides extends to other species of piscivorous cone snails. The results of this study imply that novel regulatory mechanisms exist to select specific venom peptides for injection into prey.


Assuntos
Conotoxinas/análise , Caramujo Conus/química , Peptídeos/isolamento & purificação , Animais , Fracionamento Químico , Cromatografia Líquida de Alta Pressão , Peptídeos/química , Especificidade da Espécie , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
19.
J Mol Evol ; 58(6): 673-80, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15461424

RESUMO

The protamine of squid is one of the most arginine-rich protamines (77%, mol/mol). It possesses a leading sequence that is posttranslationally removed during spermatogenesis in a manner that is analogous to that observed in some of its vertebrate protamine counterparts. In this paper we describe the gene sequence of the protamine of the squid Loligo opalescens. This represents the first complete gene sequence ever reported for an invertebrate protamine. Like those of vertebrate protamines, the messenger RNA is polyadenylated but the gene does not contain an intron. The promoter region contains the major transcriptional regulatory elements (CRE, TATA box, and CAP) that are also characteristic of the vertebrate protamine genes. It is unclear whether the similarities of protamines in species from both the deuterostome and the protostome branches represent the result of phylogenetic conservation or evolutionary convergence.


Assuntos
Arginina/genética , Decapodiformes/genética , Protaminas/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Northern Blotting , Primers do DNA , DNA Complementar/genética , Eletroforese em Gel de Poliacrilamida , Componentes do Gene , Dados de Sequência Molecular , Alinhamento de Sequência , Análise de Sequência de DNA
20.
J Gen Physiol ; 123(6): 685-96, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15148327

RESUMO

A toxin from a marine gastropod's defensive mucus, a disulfide-linked dimer of 6-bromo-2-mercaptotryptamine (BrMT), was found to inhibit voltage-gated potassium channels by a novel mechanism. Voltage-clamp experiments with Shaker K channels reveal that externally applied BrMT slows channel opening but not closing. BrMT slows K channel activation in a graded fashion: channels activate progressively slower as the concentration of BrMT is increased. Analysis of single-channel activity indicates that once a channel opens, the unitary conductance and bursting behavior are essentially normal in BrMT. Paralleling its effects against channel opening, BrMT greatly slows the kinetics of ON, but not OFF, gating currents. BrMT was found to slow early activation transitions but not the final opening transition of the Shaker ILT mutant, and can be used to pharmacologically distinguish early from late gating steps. This novel toxin thus inhibits activation of Shaker K channels by specifically slowing early movement of their voltage sensors, thereby hindering channel opening. A model of BrMT action is developed that suggests BrMT rapidly binds to and stabilizes resting channel conformations.


Assuntos
Dissulfetos/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Toxinas Marinhas/farmacologia , Canais de Potássio/efeitos dos fármacos , Canais de Potássio/fisiologia , Potássio/metabolismo , Caramujos , Triptaminas/farmacologia , Animais , Células CHO , Células Cultivadas , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Drosophila , Proteínas de Drosophila , Ativação do Canal Iônico/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Oócitos/efeitos dos fármacos , Oócitos/fisiologia , Superfamília Shaker de Canais de Potássio , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA