Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 129(11): 115001, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36154406

RESUMO

We report the first direct evidence for the axisymmetric standard magnetorotational instability (SMRI) from a combined experimental and numerical study of a magnetized liquid-metal shear flow in a Taylor-Couette cell with independently rotating and electrically conducting end caps. When a uniform vertical magnetic field B_{i} is applied along the rotation axis, the measured radial magnetic field B_{r} on the inner cylinder increases linearly with a small magnetic Reynolds number Rm due to the magnetization of the residue Ekman circulation. Onset of the axisymmetric SMRI is identified from the nonlinear increase of B_{r} beyond a critical Rm in both experiments and nonlinear numerical simulations. The axisymmetric SMRI exists only at sufficiently large Rm and intermediate B_{i}, a feature consistent with theoretical predictions. Our simulations further show that the axisymmetric SMRI causes the velocity and magnetic fields to contribute an outward flux of axial angular momentum in the bulk region, just as it should in accretion disks.

2.
Nat Commun ; 13(1): 4679, 2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945242

RESUMO

The standard magnetorotational instability (SMRI) is a promising mechanism for turbulence and rapid accretion in astrophysical disks. It is a magnetohydrodynamic (MHD) instability that destabilizes otherwise hydrodynamically stable disk flow. Due to its microscopic nature at astronomical distances and stringent requirements in laboratory experiments, SMRI has remained unconfirmed since its proposal, despite its astrophysical importance. Here we report a nonaxisymmetric MHD instability in a modified Taylor-Couette experiment. To search for SMRI, a uniform magnetic field is imposed along the rotation axis of a swirling liquid-metal flow. The instability initially grows exponentially, becoming prominent only for sufficient flow shear and moderate magnetic field. These conditions for instability are qualitatively consistent with SMRI, but at magnetic Reynolds numbers below the predictions of linear analyses with periodic axial boundaries. Three-dimensional numerical simulations, however, reproduce the observed instability, indicating that it grows linearly from the primary axisymmetric flow modified by the applied magnetic field.

3.
Phys Rev E ; 102(2-1): 023113, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32942507

RESUMO

Extensive simulations of the Princeton Magnetorotational Instability (MRI) Experiment with the Spectral/Finite Element code for Maxwell and Navier-Stokes Equations (SFEMaNS) have been performed to map the MRI-unstable region as a function of inner cylinder angular velocity and applied vertical magnetic field. The angular velocities of the outer cylinder and the end-cap rings follow the inner cylinder in fixed ratios optimized for MRI. We first confirm the exponential growth of the MRI linear phase using idealized conducting vertical boundaries (end caps) rotating differentially with a Taylor-Couette profile. Subsequently, we run a multitude of simulations to scan the experimental parameter space and find that the normalized volume-averaged mean-square radial magnetic field, our main instability indicator, rises significantly where MRI is expected. At various locations, the local radial components of fluid velocity and generated magnetic field are well correlated with the volume-averaged indicator. Based on this correlation, a diagnostic system that will measure the radial magnetic field at several locations on the inner cylinder is proposed as the main comparison between simulation and experiment. A detailed analysis of poloidal mode structures in the SFEMaNS code indicates that MRI, rather than Ekman circulation or Rayleigh instability, dominates the fluid behavior in the region where MRI is expected.

4.
Phys Rev E ; 100(3-1): 033116, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31639988

RESUMO

Stability and nonlinear evolution of rotating magnetohydrodynamic flows in the Princeton magnetorotational instability (MRI) experiment are examined using three-dimensional non-axisymmetric simulations. In particular, the effect of axial boundary conductivity on a free Stewartson-Shercliff layer (SSL) is numerically investigated using the spectral finite-element Maxwell and Navier Stokes (SFEMaNS) code. The free SSL is established by a sufficiently strong magnetic field imposed axially across the differentially rotating fluid with two rotating rings enforcing the boundary conditions. Numerical simulations show that the response of the bulk fluid flow is vastly different in the two different cases of insulating and conducting end caps. We find that, for the insulating end caps, there is a transition from stability to instability of a Kelvin-Helmholtz-like mode that saturates at an azimuthal mode number m=1, whereas for the conducting end caps, the reinforced coupling between the magnetic field and the bulk fluid generates a strong radially localized shear in the azimuthal velocity resulting in axisymmetric Rayleigh-like modes even at reduced thresholds for the axial magnetic field. For reference, three-dimensional nonaxisymmetric simulations have also been performed in the MRI unstable regime to compare the modal structures.

5.
Phys Rev E ; 97(6-1): 063110, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30011554

RESUMO

The effects of axial boundary conductivity on the formation and stability of a magnetized free Stewartson-Shercliff layer (SSL) in a short Taylor-Couette device are reported. As the axial field increases with insulating endcaps, hydrodynamic Kelvin-Helmholtz-type instabilities set in at the SSLs of the conducting fluid, resulting in a much reduced flow shear. With conducting endcaps, SSLs respond to an axial field weaker by the square root of the conductivity ratio of endcaps to fluid. Flow shear continuously builds up as the axial field increases despite the local violation of the Rayleigh criterion, leading to a large number of hydrodynamically unstable modes. Numerical simulations of both the mean flow and the instabilities are in agreement with the experimental results.

6.
Phys Rev Lett ; 102(14): 145003, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19392447

RESUMO

A random noise-induced beam degradation that can affect intense beam transport over long propagation distances has been experimentally studied by making use of the transverse beam dynamics equivalence between an alternating-gradient (AG) focusing system and a linear Paul trap system. For the present studies, machine imperfections in the quadrupole focusing lattice are considered, which are emulated by adding small random noise on the voltage waveform of the quadrupole electrodes in the Paul trap. It is observed that externally driven noise continuously produces a nonthermal tail of trapped ions, and increases the transverse emittance almost linearly with the duration of the noise.

7.
Phys Rev Lett ; 92(15): 155002, 2004 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-15169291

RESUMO

The results presented here demonstrate that the Paul trap simulator experiment (PTSX) simulates the propagation of intense charged particle beams over distances of many kilometers through magnetic alternating-gradient (AG) transport systems by making use of the similarity between the transverse dynamics of particles in the two systems. Plasmas have been trapped that correspond to normalized intensity parameters s=omega(2)(p)(0)/2omega(2)(q)

8.
Phys Rev Lett ; 89(10): 105002, 2002 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-12225203

RESUMO

The decay of the diocotron rotation was studied in a new regime in which trap asymmetries dominate. Decay within a few diocotron periods was observed, sometimes orders of magnitude faster than predicted by the traditional "rotational pumping" theory. The decay does not conserve angular momentum, and is strongest for small, low-density columns. The new regime appears when "magnetron-like" rotation from the end confinement fields becomes dominant, and appears to be associated with errors in these fields. Transition to decay dominated by rotational pumping was observed for larger and denser columns. The asymmetry-dominated transport was also studied, and found to depend linearly on the line density (and not the density) over nearly 4 orders of magnitude.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA