Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 53: 110062, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38317734

RESUMO

The rise of cancer immunotherapy has been a milestone in clinical oncology. Above all, immune checkpoint inhibitor treatment (ICI) with monoclonal antibodies targeting programmed cell death protein 1 (PD-1), programmed cell death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) has improved survival rates for an increasing number of malignancies. However, despite the clinical benefits, ICI-related autoimmunity has become a significant cause of non-relapse-related morbidity and mortality. Neurological immune-related adverse events (irAE-n) are particularly severe toxicities with a high risk for chronic illness, long-term steroid dependency, and early ICI treatment termination. While the clinical characteristics of irAE-n are well described, little is known about underlying immune mechanisms and potential biomarkers. Recently, high frequencies of neuronal autoantibodies in patients with irAE-n have been reported, however, their clinical relevance is unclear. Here, we present a dataset on neuronal autoantibody profiles in ICI-treated cancer patients with and without irAE-n, which was generated to investigate the potential role of neuronal autoantibodies in ICI-induced autoimmunity. Between September 2017 and January 2022 serum samples of 29 cancer patients with irAE-n post-ICI treatment) and 44 cancer control patients without high-grade immune-related adverse events (irAEs, n = 44 pre- and post-ICI treatment) were collected and tested for a large panel of brain-reactive and neuromuscular autoantibodies using indirect immunofluorescence and immunoblot assays. Prevalence of autoantibodies was compared between the groups and correlated with clinical characteristics such as outcome and irAE-n manifestation. These data represent the first systematic comparison of neuronal autoantibody profiles between ICI-treated cancer patients with and without irAE-n, providing valuable information for both researchers and clinicians. In the future, this dataset may be valuable for meta-analyses on the prevalence of neuronal autoantibodies in cancer patients.

2.
Neuro Oncol ; 26(2): 279-294, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-37823709

RESUMO

BACKGROUND: Neurologic immune-related adverse events (irAE-n) are rare but severe toxicities of immune checkpoint inhibitor (ICI) treatment. To overcome diagnostic and therapeutic challenges, a better mechanistic understanding of irAE-n is paramount. METHODS: In this observational cohort study, we collected serum and peripheral blood samples from 34 consecutive cancer patients with irAE-n (during acute illness) and 49 cancer control patients without irAE-n (pre- and on-ICI treatment, n = 44 without high-grade irAEs, n = 5 with high-grade nonneurologic irAEs). Patients received either anti-programmed cell death protein (PD)-1 or anti-PD ligand-1 monotherapy or anti-PD-1/anti-cytotoxic T-lymphocyte-associated protein-4 combination therapy. Most common cancers were melanoma, lung cancer, and hepatocellular carcinoma. Peripheral blood immune profiling was performed using 48-marker single-cell mass cytometry and a multiplex cytokine assay. RESULTS: During acute illness, patients with irAE-n presented higher frequencies of cluster of differentiation (CD)8+ effector memory type (EM-)1 and central memory (CM) T cells compared to controls without irAEs. Multiorgan immunotoxicities (neurologic + nonneurologic) were associated with higher CD8+ EM1 T cell counts. While there were no B cell changes in the overall cohort, we detected a marked decrease of IgD- CD11c+ CD21low and IgD- CD24+ CD21high B cells in a subgroup of patients with autoantibody-positive irAE-n. We further identified signatures indicative of enhanced chemotaxis and inflammation in irAE-n patients and discovered C-X-C motif chemokine ligand (CXCL)10 as a promising marker to diagnose high-grade immunotoxicities such as irAE-n. CONCLUSIONS: We demonstrate profound and partly subgroup-specific immune cell dysregulation in irAE-n patients, which may guide future biomarker development and targeted treatment approaches.


Assuntos
Neoplasias Pulmonares , Melanoma , Humanos , Doença Aguda , Autoimunidade , Ligantes , Estudos Retrospectivos
3.
Front Immunol ; 14: 1108116, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845122

RESUMO

Background: Neurological immune-related adverse events (irAE-n) are severe and potentially fatal toxicities of immune checkpoint inhibitors (ICI). To date, the clinical significance of neuronal autoantibodies in irAE-n is poorly understood. Here, we characterize neuronal autoantibody profiles in patients with irAE-n and compare these with ICI-treated cancer patients without irAE-n. Methods: In this cohort study (DRKS00012668), we consecutively collected clinical data and serum samples of 29 cancer patients with irAE-n (n = 2 pre-ICI, n = 29 post-ICI) and 44 cancer control patients without irAE-n (n = 44 pre- and post-ICI). Using indirect immunofluorescence and immunoblot assays, serum samples were tested for a large panel of neuromuscular and brain-reactive autoantibodies. Results: IrAE-n patients and controls received ICI treatment targeting programmed death protein (PD-)1 (61% and 62%), programmed death ligand (PD-L)1 (18% and 33%) or PD-1 and cytotoxic T-lymphocyte-associated protein (CTLA-)4 (21% and 5%). Most common malignancies were melanoma (both 55%) and lung cancer (11% and 14%). IrAE-n affected the peripheral nervous system (59%), the central nervous system (21%), or both (21%). Prevalence of neuromuscular autoantibodies was 63% in irAE-n patients, which was higher compared to ICI-treated cancer patients without irAE-n (7%, p <.0001). Brain-reactive autoantibodies targeting surface (anti-GABABR, -NMDAR, -myelin), intracellular (anti-GFAP, -Zic4, -septin complex), or unknown antigens were detected in 13 irAE-n patients (45%). In contrast, only 9 of 44 controls (20%) presented brain-reactive autoantibodies before ICI administration. However, seven controls developed de novo brain-reactive autoantibodies after ICI initiation, therefore, prevalence of brain-reactive autoantibodies was comparable between ICI-treated patients with and without irAE-n (p = .36). While there was no clear association between specific brain-reactive autoantibodies and clinical presentation, presence of at least one of six selected neuromuscular autoantibodies (anti-titin, anti-skeletal muscle, anti-heart muscle, anti-LRP4, anti-RyR, anti-AchR) had a sensitivity of 80% (95% CI 0.52-0.96) and a specificity of 88% (95% CI 0.76-0.95) for the diagnosis of myositis, myocarditis, or myasthenia gravis. Conclusion: Neuromuscular autoantibodies may serve as a feasible marker to diagnose and potentially predict life-threatening ICI-induced neuromuscular disease. However, brain-reactive autoantibodies are common in both ICI-treated patients with and without irAE-n, hence, their pathogenic significance remains unclear.


Assuntos
Doenças do Sistema Imunitário , Neoplasias Pulmonares , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Autoanticorpos , Estudos de Coortes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA