Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gerontology ; 70(1): 7-14, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37879300

RESUMO

BACKGROUND: As the largest organ in the human body, the skin is continuously exposed to intrinsic and extrinsic stimuli that impact its functionality and morphology with aging. Skin aging entails dysregulation of skin cells and loss, fragmentation, or fragility of extracellular matrix fibers that are manifested macroscopically by wrinkling, laxity, and pigmentary abnormalities. Age-related skin changes are the focus of many surgical and nonsurgical treatments aimed at improving overall skin appearance and health. SUMMARY: As a hallmark of aging, cellular senescence, an essentially irreversible cell cycle arrest with apoptosis resistance and a secretory phenotype, manifests across skin layers by affecting epidermal and dermal cells. Knowledge of skin-specific senescent cells, such as melanocytes (epidermal aging) and fibroblasts (dermal aging), will promote our understanding of age-related skin changes and how to optimize patient outcomes in esthetic procedures. KEY MESSAGES: This review provides an overview of skin aging in the context of cellular senescence and discusses senolytic intervention strategies to selectively target skin senescent cells that contribute to premature skin aging.


Assuntos
Senoterapia , Envelhecimento da Pele , Humanos , Envelhecimento/fisiologia , Senescência Celular/fisiologia , Melanócitos , Pele
2.
J Orthop Res ; 42(5): 961-972, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37990927

RESUMO

Chordae tendineae, referred to as heart tendinous cords, act as tendons connecting the papillary muscles to the valves in the heart. Their role is analogous to tendons in the musculoskeletal system. Despite being exposed to millions of cyclic tensile stretches over a human's lifetime, chordae tendineae rarely suffer from overuse injuries. On the other hand, musculoskeletal tendinopathy is very common and remains challenging in clinical treatment. The objective of this study was to investigate the mechanism behind the remarkable durability and resistance to overuse injuries of chordae tendineae, as well as to explore their effects on flexor tenocyte biology. The messenger RNA expression profiles of chordae tendineae were analyzed using RNA sequencing and verified by quantitative reverse transcription polymerase chain reaction  and immunohistochemistry. Interestingly, we found that periostin (Postn) and fibroblast growth factor 7 (FGF7) were expressed at significantly higher levels in chordae tendineae, compared to flexor tendons. We further treated flexor tenocytes in vitro with periostin and FGF7 to examine their effects on the proliferation, migration, apoptosis, and tendon-related gene expression of flexor tenocytes. The results displayed enhanced cell proliferation ability at an early stage and an antiapoptotic effect on tenocytes, while treated with periostin and/or FGF7 proteins. Furthermore, there was a trend of promoted tenocyte migration capability. These findings indicated that Postn and FGF7 may represent novel cytokines to target flexor tendon healing. Clinical significance: The preliminary discovery leads to a novel idea for treating tendinopathy in the musculoskeletal system using specific molecules identified from chordae tendineae.


Assuntos
Transtornos Traumáticos Cumulativos , Tendinopatia , Animais , Cães , Humanos , Cordas Tendinosas/fisiologia , Tenócitos/fisiologia , Periostina , Fator 7 de Crescimento de Fibroblastos , Expressão Gênica , Biologia
3.
bioRxiv ; 2023 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-37546859

RESUMO

Carpal tunnel syndrome (CTS) is a common musculoskeletal disorder, characterized by fibrosis of the subsynovial connective tissue (SSCT) mediated by transforming growth factor beta (TGF-ß). Risk factors for CTS include metabolic dysfunction and age. Additionally, the incidence of CTS is higher in women. In this study we hypothesized that a high-fat diet (HFD), a common driver of metabolic dysfunction, would promote SSCT fibrosis found in CTS and that this response would be sex dependent. To test this, we examined the effects of HFD and sex on SSCT fibrosis using our established rabbit model of CTS. Forty-eight (24 male, 24 female) adult rabbits were divided into four groups including HFD or standard diet with and without CTS induction. SSCT was collected for histological and gene expression analysis. HFD promoted SSCT thickening and upregulated profibrotic genes, including TGF-ß. Fibrotic genes were differentially expressed in males and females. Interestingly while the prevalence of CTS is greater in women than in men, the converse is observed in the presence of metabolic dysfunction. This work recapitulates this clinical observation and begins to elucidate the sex-based differences found in SSCT fibrosis. This knowledge should drive further research and may lead to metabolic and sex specific therapeutic strategies for the treatment of patients with CTS.

4.
Connect Tissue Res ; 64(1): 1-13, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35903886

RESUMO

Aging is a complex and progressive process where the tissues of the body demonstrate a decreased ability to maintain homeostasis. During aging, there are substantial cellular and molecular changes, with a subsequent increase in susceptibility to pathological degeneration of normal tissue function. In tendon, aging results in well characterized alterations in extracellular matrix (ECM) structure and composition. In addition, the cellular environment of aged tendons is altered, including a marked decrease in cell density and metabolic activity, as well as an increase in cellular senescence. Collectively, these degenerative changes make aging a key risk factor for the development of tendinopathies and can increase the frequency of tendon injuries. However, inconsistencies in the extent of age-related degenerative impairments in tendons have been reported, likely due to differences in how "old" and "young" age-groups have been defined, differences between anatomically distinct tendons, and differences between animal models that have been utilized to study the impact of aging on tendon homeostasis. In this review, we address these issues by summarizing data by well-defined age categories (young adults, middle-aged, and aged) and from anatomically distinct tendon types. We then summarize in detail how aging affects tendon mechanics, structure, composition, and the cellular environment based on current data and underscore what is currently not known. Finally, we discuss gaps in the current understanding of tendon aging and propose key avenues for future research that can shed light on the specific mechanisms of tendon pathogenesis due to aging.


Assuntos
Tendinopatia , Traumatismos dos Tendões , Animais , Tendões/metabolismo , Tendinopatia/patologia , Traumatismos dos Tendões/patologia , Envelhecimento/patologia , Homeostase
5.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232777

RESUMO

The intrinsic healing following tendon injury is ideal, in which tendon progenitor cells proliferate and migrate to the injury site to directly bridge or regenerate tendon tissue. However, the mechanism determining why and how those cells are attracted to the injury site for tendon healing is not understood. Since the tenocytes near the injury site go through apoptosis or necrosis following injury, we hypothesized that secretions from injured tenocytes might have biological effects on cell proliferation and migration to enhance tendon healing. Tenocyte apoptosis was induced by 24 h cell starvation. Apoptotic body-rich media (T-ABRM) and apoptotic body-depleted media (T-ABDM) were collected from culture media after centrifuging. Tenocytes and bone marrow-derived stem cells (BMDSCs) were isolated and cultured with the following four media: (1) T-ABRM, (2) T-ABDM, (3) GDF-5, or (4) basal medium with 2% fetal calf serum (FCS). The cell activities and functions were evaluated. Both T-ABRM and T-ABDM treatments significantly stimulated the cell proliferation, migration, and extracellular matrix synthesis for both tenocytes and BMDSCs compared to the control groups (GDF-5 and basal medium). However, cell proliferation, migration, and extracellular matrix production of T-ABRM-treated cells were significantly higher than the T-ABDM, which indicates the apoptotic bodies are critical for cell activities. Our study revealed the possible mechanism of the intrinsic healing of the tendon in which apoptotic bodies, in the process of apoptosis, following tendon injury promote tenocyte and stromal cell proliferation, migration, and production. Future studies should analyze the components of the apoptotic bodies that play this role, and, thus, the targeting of therapeutics can be developed.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Traumatismos dos Tendões , Proliferação de Células , Células Cultivadas , Meios de Cultura/farmacologia , Fator 5 de Diferenciação de Crescimento/farmacologia , Humanos , Células-Tronco Mesenquimais/fisiologia , Soroalbumina Bovina/farmacologia , Traumatismos dos Tendões/terapia , Tenócitos
6.
J Orthop Res ; 40(8): 1883-1895, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34783060

RESUMO

Rotator cuff injuries increase with age. The enthesis is the most frequent site of rotator cuff injury and degeneration. Understanding age-related changes of the enthesis are essential to determine the mechanism of rotator cuff injuries, degeneration, and to guide mechanistically driven therapies. In this study, we explored age-related cellular changes of the rotator cuff enthesis in young, mature, and aged rats. Here we found that the aged enthesis is typified by an increased mineralized zone and decreased nonmineralized zone. Proliferation, migration, and colony-forming potential of rotator cuff derived cells (RCECs) was attenuated with aging. The tenogenic and chondrogenic potential were significantly reduced, while the osteogenic potential increased in aged RCECs. The adipogenic potential increased in RCECs with age. This study explores the cellular differences found between young, mature, and aged rotator cuff enthesis cells and highlights the importance of using age-appropriate models, as well as provides a basis for further delineation of mechanisms and potential therapeutics for rotator cuff injuries.


Assuntos
Lesões do Manguito Rotador , Manguito Rotador , Adipogenia , Animais , Condrogênese , Osteogênese , Ratos
7.
Plast Reconstr Surg ; 148(2): 200e-211e, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34153020

RESUMO

BACKGROUND: The nerve autograft remains the gold standard when reconstructing peripheral nerve defects. However, although autograft repair can result in useful functional recovery, poor outcomes are common, and better treatments are needed. The purpose of this study was to evaluate the effect of purified exosome product on functional motor recovery and nerve-related gene expression in a rat sciatic nerve reverse autograft model. METHODS: Ninety-six Sprague-Dawley rats were divided into three experimental groups. In each group, a unilateral 10-mm sciatic nerve defect was created. The excised nerve was reversed and used to reconstruct the defect. Group I animals received the reversed autograft alone, group II animals received the reversed autograft with fibrin glue, and group III animals received the reversed autograft with purified exosome product suspended in the fibrin glue. The animals were killed at 3 and 7 days and 12 and 16 weeks after surgery. Evaluation included compound muscle action potentials, isometric tetanic force, tibialis anterior muscle wet weight, nerve regeneration-related gene expression, and nerve histomorphometry. RESULTS: At 16 weeks, isometric tetanic force was significantly better in group III (p = 0.03). The average axon diameter of the peroneal nerve was significantly larger in group III at both 12 and 16 weeks (p = 0.015 at 12 weeks; p < 0.01 at 16 weeks). GAP43 and S100b gene expression was significantly up-regulated by purified exosome product. CONCLUSIONS: Local administration of purified exosome product demonstrated improved nerve regeneration profiles in the reverse sciatic nerve autograft rat model. Thus, purified exosome product may have beneficial effects on nerve regeneration, gene profiles, and motor outcomes.


Assuntos
Exossomos , Regeneração Tecidual Guiada/métodos , Traumatismos dos Nervos Periféricos/cirurgia , Nervo Isquiático/transplante , Neuropatia Ciática/cirurgia , Animais , Autoenxertos/fisiologia , Modelos Animais de Doenças , Humanos , Masculino , Regeneração Nervosa , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/lesões , Nervo Isquiático/fisiologia
8.
Ann Transl Med ; 9(6): 450, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33850847

RESUMO

BACKGROUND: The suture-tendon interface turned out to be the weak point of a repaired rotator cuff. A double rip-stop (DRS) technique was developed to enhance the strength of the suture-tendon interface. The first aim of this study was to compare the suture-tendon interface strength between mesh suture and the No. 2 FiberWire (FW), which is commonly used in the clinic. The second aim was to compare the biomechanical properties of rotator cuff repair between mesh suture and No. 2 FiberWire using a typical suture-bridge (SB) and DRS techniques. METHODS: Eighteen porcine subscapularis tendon (SST) was randomly assigned to the Mesh-tendon group and FiberWire-tendon group. A single suture loop was passed through the SST with a Mesh suture or FiberWire. Thirty-two infraspinatus tendons (ISTs) were randomly assigned to four groups: SB-Mesh group: SB technique with Mesh suture, SB-FW group: SB technique with FiberWire, DRS-Mesh group: DRS technique with Mesh suture, and DRS-FW group: DRS technique with FiberWire. All repaired specimens were underwent failure testing. Failure modes, load to create a 3-mm gap, failure load, and stiffness were compared. RESULTS: There were no significant differences between the Mesh-tendon group and FiberWire-tendon group regarding the failure load, stiffness, and ultimate stress. When the same technique was used, the rotator cuff repaired with a mesh suture had the similar load to create a 3-mm gap, failure load, and stiffness compared with FiberWire. When the same suture was used, the DRS technique had a significantly higher load to create a 3-mm gap formation and failure load compared with the SB technique. CONCLUSIONS: The repair failure strength and stiffness using the mesh suture were similar to the FiberWire suture regardless of the repair techniques. However, the repair strength in the DRS technique was significantly stronger than the SB technique when the same suture material was used.

9.
J Orthop Sci ; 26(2): 295-299, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32317146

RESUMO

BACKGROUND: Carpal Tunnel Syndrome (CTS) is an idiopathic fibrotic disorder. Fibrosis in the subsynovial connective tissues (SSCT) of CTS and many other fibrotic diseases is mediated by Transforming growth factor ß (TGF-ß). Recently monocyte chemoattractant protein-1 (MCP-1) a cytokine involved in cellular recruitment has been suggested to regulate TGF-ß activity. It is related to the onset of diseases which are caused by fibrosis, such as idiopathic pulmonary fibrosis, renal fibrosis, and systemic scleroderma. In this study, we evaluated the effect of the MCP-1 synthesis inhibitor, Bindarit, on primary cultures of fibroblasts from the SSCT of five CTS patients. METHODS: Fibroblasts were treated with Bindarit (10 µM, 50 µM, 100 µM, or 300 µM). Responses to inhibitors were evaluated by regulation of CTS fibrosis-associated genes, fibrosis gene array and Smad luciferase reporter assay. We also assessed the combination effect of Bindarit and SD208, a TGF-ß receptor type 1 inhibitor on TGF-ß signaling. RESULTS: Collagen type III A1 (Col3), connective tissue growth factor (CTGF), and SERPINE1 expression were significantly down-regulated by Bindarit (300 µM) compared to vehicle control. In the fibrosis array, expression of inhibin beta E chain precursor (INHBE), beta actin (ACTB), endothelin 1 (EDN1) and hypoxanthine phosphoribosyltransferase 1 (HPRT1) were significantly down-regulated, and integrin beta-3 (ITGB3) was significantly up-regulated by Bindarit (300 µM). Smad signal transduction activation was significantly down-regulated by Bindarit (300 µM) and/or SD208 (1 µM) with TGF-ß1 compared to vehicle control with TGF-ß1. CONCLUSIONS: These results suggest that Bindarit in combination with SD208 may be beneficial as medical therapy for the SSCT fibrosis associated with CTS.


Assuntos
Síndrome do Túnel Carpal , Quimiocina CCL2 , Síndrome do Túnel Carpal/tratamento farmacológico , Quimiocina CCL2/antagonistas & inibidores , Colágeno Tipo III , Fibroblastos , Fibrose , Humanos , Fator de Crescimento Transformador beta , Fator de Crescimento Transformador beta1
10.
Connect Tissue Res ; 62(1): 115-132, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32683988

RESUMO

Purpose/Aim: We recently found that blocking CCN2 signaling using a monoclonal antibody (FG-3019) may be a novel therapeutic strategy for reducing overuse-induced tissue fibrosis. Since CCN2 plays roles in osteoclastogenesis, and persistent performance of a high repetition high force (HRHF) lever pulling task results in a loss in trabecular bone volume in the radius, we examined here whether blocking CCN2 signaling would reduce the early catabolic effects of performing a HRHF task for 3 weeks. Materials and Methods: Young adult, female, Sprague-Dawley rats were operantly shaped to learn to pull at high force levels, before performing the HRHF task for 3 weeks. HRHF task rats were then left untreated (HRHF Untreated), treated in task weeks 2 and 3 with a monoclonal antibody that antagonizes CCN2 (HRHF+FG-3019), or treated with an IgG (HRHF+IgG), while continuing to perform the task. Non-task control rats were left untreated. Results: In metaphyseal trabeculae of the distal radius, HRHF Untreated and HRHF-IgG rats showed increased osteoblast numbers and other indices of bone formation, compared to controls, yet decreased trabecular bone volume, increased osteoclast numbers, and increased serum CTX-1 (a serum biomarker of bone resorption). HRHF+FG-3019 rats also showed increased osteoblast numbers and bone formation, but in contrast to HRHF Untreated and HRHF-IgG rats, showed higher trabecular bone volume, and reduced osteoclast numbers and serum CTX-1 levels (and statistically similar to Control levels). Conclusions: HRHF loading increased bone formation in each task group, yet blocking CCN2 dampened trabecular bone catabolism by reducing osteoclast numbers and activity.


Assuntos
Osteogênese , Animais , Anticorpos Monoclonais , Fator de Crescimento do Tecido Conjuntivo , Transtornos Traumáticos Cumulativos , Modelos Animais de Doenças , Feminino , Imunoglobulina G , Ratos , Ratos Sprague-Dawley
11.
J Orthop Sci ; 26(5): 902-907, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32814661

RESUMO

BACKGROUND: The purpose of this study was to determine the effect of fibrinogen concentration on cell viability and migration in a tissue culture tendon healing model. METHODS: Forty-eight canine flexor digitorum profundus tendons were randomly divided into three groups. In each group the tendons were lacerated and repaired augmented with a canine bone marrow stromal cell seeded fibrin interposition patch using either 5 mg/ml fibrinogen and 25 U/ml thrombin (physiological as a control), 40 mg/ml fibrinogen and 250 U/ml thrombin (low adhesive), or 80 mg/ml fibrinogen and 250 U/ml thrombin (high adhesive). The sutured tendons were cultured for two or four weeks. RESULTS: Failure load was not significantly different among the groups. Cell-labeling staining showed that the stromal cells migrated across the gap in the control and low adhesive groups, but there was no cell migration in the high adhesive group at two weeks. CONCLUSION: A high fibrinogen concentration in a fibrin patch or glue may impede early cell migration. LEVEL OF EVIDENCE: Not applicable because this study was a laboratory study.


Assuntos
Procedimentos de Cirurgia Plástica , Traumatismos dos Tendões , Animais , Cães , Movimento Celular , Fibrina , Traumatismos dos Tendões/tratamento farmacológico , Traumatismos dos Tendões/cirurgia , Tendões/cirurgia
12.
Orthop J Sports Med ; 8(9): 2325967120939001, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32953920

RESUMO

BACKGROUND: The retear rate after rotator cuff repair remains unacceptably high. Various biological engineered scaffolds have been proposed to reduce the retear rate. We have developed a double rip-stop repair with medial row knot (DRSK) technique to enhance suture-tendon strength and a novel engineered tendon-fibrocartilage-bone composite (TFBC) for rotator cuff repair. HYPOTHESIS: DRSK rotator cuff repair augmented with TFBC will have better biomechanical properties than that of DRSK repair with an acellular dermal graft (DG). STUDY DESIGN: Controlled laboratory study. METHODS: Fresh-frozen canine shoulders (n = 30) and knees (n = 10) were used. TFBCs were harvested from the patellar tendon-tibia complex and prepared for rotator cuff repair. The infraspinatus tendon was sharply detached from its bony attachment and randomly assigned to the (1) control group: DRSK repair alone, (2) TFBC group: DRSK repair with TFBC, and (3) DG group: DRSK repair with DG. All specimens were tested to failure, and videos were recorded. The footprint area, tendon thickness, load to create 3-mm gap formation, failure load, failure modes, and stiffness were recorded and compared. Data were recorded as mean ± SD. RESULTS: The mean load to create a 3-mm gap in both the control group (206.8 ± 55.7 N) and TFBC group (208.9 ± 39.1 N) was significantly higher than that in the DG group (157.7 ± 52.3 N) (P < .05 for all). The failure load of the control group (275.7 ± 75.0 N) and TFBC group (275.2 ± 52.5 N) was significantly higher compared with the DG group (201.5 ± 49.7 N) (P < .05 for both comparisons). The stiffness of the control group (26.4 ± 4.7 N/mm) was significantly higher than of the TFBC group (20.4 ± 4.4 N/mm) and the DG group (21.1 ± 4.8 N/mm) (P < .05 for both comparisons). CONCLUSION: TFBC augmentation showed superior biomechanical performance to DG augmentation in rotator cuff tears repaired using the DRSK technique, while there was no difference between the TFBC and control groups. CLINICAL RELEVANCE: TFBC may help to reduce retear or gap formation after rotator cuff repair using the DRSK technique.

13.
Bone Joint Res ; 9(6): 285-292, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32728429

RESUMO

AIMS: Many biomechanical studies have shown that the weakest biomechanical point of a rotator cuff repair is the suture-tendon interface at the medial row. We developed a novel double rip-stop (DRS) technique to enhance the strength at the medial row for rotator cuff repair. The objective of this study was to evaluate the biomechanical properties of the DRS technique with the conventional suture-bridge (SB) technique and to evaluate the biomechanical performance of the DRS technique with medial row knots. METHODS: A total of 24 fresh-frozen porcine shoulders were used. The infraspinatus tendons were sharply dissected and randomly repaired by one of three techniques: SB repair (SB group), DRS repair (DRS group), and DRS with medial row knots repair (DRSK group). Specimens were tested to failure. In addition, 3 mm gap formation was measured and ultimate failure load, stiffness, and failure modes were recorded. RESULTS: The mean load to create a 3 mm gap formation in the DRSK and DRS groups was significantly higher than in the SB group. The DRSK group had the highest load to failure with a mean ultimate failure load of 395.0 N (SD 56.8) compared to the SB and DRS groups, which recorded 147.1 N (SD 34.3) and 285.9 N (SD 89.8), respectively (p < 0.001 for both). The DRS group showed a significantly higher mean failure load than the SB group (p = 0.006). Both the DRS and DRSK groups showed significantly higher mean stiffness than the SB group. CONCLUSION: The biomechanical properties of the DRS technique were significantly improved compared to the SB technique. The DRS technique with medial row knots showed superior biomechanical performance than the DRS technique alone.

14.
J Orthop Res ; 38(8): 1845-1855, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31930553

RESUMO

Flexor tendon injuries and tendinopathy are very common but remain challenging in clinical treatment. Exosomes-based cell-free therapy appears to be a promising strategy for tendon healing, while limited studies have evaluated its impacts on tenocyte biology. The objective of this study was to characterize a novel purified exosome product (PEP) derived from plasma, as well as to explore its cellular effects on canine tenocyte biology. The transmission electron microscope revealed that exosomes of PEP present cup-shaped structures with the diameters ranged from 80 to 141 nm, and the NanoSight report presented that their size mainly concentrated around 100 nm. The enzyme-linked immunosorbent assay kits analysis showed that PEP was positive for CD63 and AChE expression, and the cellular uptake of exosomes internalized into tenocyte cytoplasm was observed. The cell growth assays displayed that tenocyte proliferation ability was enhanced by PEP solution in a dose-dependent manner. Tenogenic phenotype was preserved as is evident by that tendon-related genes expression (SCX, COL1A, COL3A1, TNMD, DCN, and MKX) were expressed insistently in a high level, while tenocytes were treated with 5% PEP solution. Furthermore, migration capability was maintained and total collagen deposition was increased. More interesting, dexamethasone-induced cellular apoptosis was attenuated during the incubation of tenocytes with a 5% PEP solution. These findings will provide the basic understandings about the PEP, and support the potential use of this biological strategy for tendon healing.


Assuntos
Exossomos/fisiologia , Tenócitos/fisiologia , Animais , Apoptose , Movimento Celular , Proliferação de Células , Colágeno/metabolismo , Dexametasona , Cães , Exossomos/química , Exossomos/ultraestrutura , Cultura Primária de Células
15.
J Cell Physiol ; 235(7-8): 5679-5688, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31975377

RESUMO

Deletion of TGFß inducible early gene-1 (TIEG) in mice results in an osteopenic phenotype that exists only in female animals. Molecular analyses on female TIEG knockout (KO) mouse bones identified increased expression of sclerostin, an effect that was confirmed at the protein level in serum. Sclerostin antibody (Scl-Ab) therapy has been shown to elicit bone beneficial effects in multiple animal model systems and human clinical trials. For these reasons, we hypothesized that Scl-Ab therapy would reverse the low bone mass phenotype of female TIEG KO mice. In this study, wildtype (WT) and TIEG KO female mice were randomized to either vehicle control (Veh, n = 12/group) or Scl-Ab therapy (10 mg/kg, 1×/wk, s.c.; n = 12/group) and treated for 6 weeks. Following treatment, bone imaging analyses revealed that Scl-Ab therapy significantly increased cancellous and cortical bone in the femur of both WT and TIEG KO mice. Similar effects also occurred in the vertebra of both WT and TIEG KO animals. Additionally, histomorphometric analyses revealed that Scl-Ab therapy resulted in increased osteoblast perimeter/bone perimeter in both WT and TIEG KO animals, with a concomitant increase in P1NP, a serum marker of bone formation. In contrast, osteoclast perimeter/bone perimeter and CTX-1 serum levels were unaffected by Scl-Ab therapy, irrespective of mouse genotype. Overall, our findings demonstrate that Scl-Ab therapy elicits potent bone-forming effects in both WT and TIEG KO mice and effectively increases bone mass in female TIEG KO mice.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doenças Ósseas Metabólicas/genética , Proteínas de Ligação a DNA/genética , Osteogênese/genética , Fatores de Transcrição/genética , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/sangue , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Anticorpos/farmacologia , Densidade Óssea/genética , Desenvolvimento Ósseo/genética , Doenças Ósseas Metabólicas/tratamento farmacológico , Doenças Ósseas Metabólicas/imunologia , Doenças Ósseas Metabólicas/patologia , Feminino , Fêmur/crescimento & desenvolvimento , Fêmur/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Fenótipo
16.
J Orthop Translat ; 19: 58-67, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31844614

RESUMO

BACKGROUND/OBJECTIVE: Stem cell-based therapy has been applied to accelerate the revitalization of allograft tendon into a viable and functional tendon. Although many authors have proposed different methods to help the seeded stem cell distribution in the decellularized allograft, limited success has been achieved as tendon is a high dense connective tissue. We hypothesized that bone marrow stromal cells (BMSCs), seeded through the lateral slit, can regenerate the decellularized tendon (DCT) graft. The cell proliferation, cell viability, and tendon-specific gene expression are increased with the seeded cell density. METHODS: Eighty-seven flexor digitorum profundus tendons were equally and randomly divided into 6 treatment groups that were seeded with low-density (2 × 107 cells/mL) and high-density (5 × 107 cells/mL) BMSCs through lateral slits cultured for 2 and 4 weeks, DCT without cells, and fresh live tendons. Tendons were evaluated for cell distribution, cell proliferation, cell viability, gene expression of Collagen I and Collagen III, tenogenic markers, and MMPs. RESULTS: Histologic evaluation revealed BMSCs distributed from the lateral slit to the whole DCT. BMSCs were proliferated and kept viable in lateral slit decellularized tendon (LSDCT) in both seeded cell density groups after 2 and 4 weeks of culture. However, no significant differences in the cell proliferation between both cell density groups at 2 and 4 weeks of culture were observed. The lowest cell viability was found in the high-density group after 4 weeks of culture. BMSCs in LSDCT showed a significant tendency of higher gene expression of Collagen I, Collagen III, tenascin C, MMP2, MMP9, and MMP13 compared to normal tendons in both cell density groups at 2 and 4 weeks of culture. CONCLUSION: BMSCs proliferated and remained viable after 2 and 4 weeks of culture with distribution throughout the lateral slits. Lateral slit preparation allows for the effective delivery and maintenance of mesenchymal cells with proliferation and generating a tenogenic behaviour of DCT in both the low and high cell densities in an in vitro model. THE TRANSLATION POTENTIAL OF THIS ARTICLE: Revitalizing the implanted decellularized allograft is important for clinical application. In this study, we demonstrated that the DCT, with lateral slits, could harbour the seeded stem cell and stimulate proliferation with collagen synthesis. This evidence was presented for clinical application of the lateral slit technique, in DCT grafts, which would repopulate the seeded BMSCs during tendon and ligament reconstruction.

17.
Biomaterials ; 192: 189-198, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30453215

RESUMO

Reducing rotator cuff failure after repair remains a challenge due to suboptimal tendon-to-bone healing. In this study we report a novel biomaterial with engineered tendon-fibrocartilage-bone composite (TFBC) and bone marrow-derived mesenchymal stem cell sheet (BMSCS); this construct was tested for augmentation of rotator cuff repair using a canine non-weight-bearing (NWB) model. A total of 42 mixed-breed dogs were randomly allocated to 3 groups (n = 14 each). Unilateral infraspinatus tendon underwent suture repair only (control); augmentation with engineered TFBC alone (TFBC), or augmentation with engineered TFBC and BMSCS (TFBC + BMSCS). Histomorphometric analysis and biomechanical testing were performed at 6 weeks after surgery. The TFBC + BMSCS augmented repairs demonstrated superior histological scores, greater new fibrocartilage formation and collagen fiber organization at the tendon-bone interface compared with the controls. The ultimate failure load and ultimate stress were 286.80 ± 45.02 N and 4.50 ± 1.11 MPa for TFBC + BMSCS group, 163.20 ± 61.21 N and 2.60 ± 0.97 MPa for control group (TFBC + BMSCS vs control, P = 1.12E-04 and 0.003, respectively), 206.10 ± 60.99 N and 3.20 ± 1.31 MPa for TFBC group (TFBC + BMSCS vs TFBC, P = 0.009 and 0.045, respectively). In conclusion, application of an engineered TFBC and BMSCS can enhance rotator cuff healing in terms of anatomic structure, collagen organization and biomechanical strength in a canine NWB model. Combined TFBC and BMSCS augmentation is a promising strategy for rotator cuff tears and has a high potential impact on clinical practice.


Assuntos
Fibrocartilagem/química , Células-Tronco Mesenquimais/citologia , Manguito Rotador/fisiologia , Tendões/química , Alicerces Teciduais/química , Cicatrização , Animais , Materiais Biocompatíveis/química , Osso e Ossos/química , Cães , Transplante de Células-Tronco Mesenquimais , Manguito Rotador/citologia , Engenharia Tecidual
18.
J Orthop Res ; 37(6): 1419-1428, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30548886

RESUMO

Flexor tendon injury is often associated with suboptimal outcomes and results in substantial digit dysfunction. Stem cells have been isolated from several experimental animals for the growing interest and needs of utilizing cell-based therapies. Recently, turkey has been developed as a new large animal model for flexor tendon research. In the present study, we reported the isolation and characterization of bone marrow-derived mesenchymal stem cells (BMSCs) from 8- to 12-month-old heritage-breed turkeys. The isolated cells demonstrated fibroblast-like morphology, clonogenic capacity, and high proliferation rate. These cells were positive for surface antigens CD90, CD105, and CD44, but were negative for CD45. The multipotency of turkey BMSCs was determined by differentiating cells into osteogenic, adipogenic, chondrogenic, and tenogenic lineages. There was upregulated gene expression of tenogenic markers, including mohawk, tenomodulin, and EGR1 as well as increased collagen synthesis in BMP12 induced cells. The successful isolation and verification of bone marrow-derived MSCs from turkey would provide opportunities of studying cell-based therapies and developing new treatments for tendon injuries using this novel preclinical large animal model. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 37:1419-1428, 2019.


Assuntos
Separação Celular/métodos , Células-Tronco Mesenquimais/citologia , Adipogenia , Animais , Células da Medula Óssea/citologia , Diferenciação Celular , Proliferação de Células , Condrogênese , Osteogênese , Tendões/citologia , Perus
19.
BMC Musculoskelet Disord ; 19(1): 342, 2018 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-30243295

RESUMO

BACKGROUND: Fibroblast behavior and cell-matrix interactions of cells from normal and idiopathic carpal tunnel syndrome (CTS) subsynovial connective tissue (SSCT) with and without Triamcinolone Acetonide (TA) were compared in this study. A cell-seeded gel contraction model was applied to investigate the effect of steroid treatment on SSCT fibroblast gene expression and function. METHODS: SSCT cells were obtained from CTS patients and fresh cadavers. Cells were isolated by mechanical and collagenase digestion. Collagen gels (1 mg/ml) were prepared with SSCT cells (1 × 106/mL). A sterile Petri dish with a cloning ring in the center was prepared. The area between the ring and outer dish was filled with cell-seeded collagen solution and gelled for 1 h. The gel was released from the outer way of the petri dish to allow gel contraction. Cell seeded gels were treated with 10 M triamcinolone acetonide (TA) or vehicle (DMSO) in modified MEM. Every 4 h for 3 days the contracting gels were photographed and areas calculated. Duplicate contraction tests were performed with each specimen, and the averages were used in the analyses, which were conducted using two-factor analysis of variance in a generalized linear model framework utilizing generalized estimating equations (GEE) to account for the correlation between samples. The contraction rate was determined by the area change over time, and the decay time constant was calculated. A customized mechanical test system was used to determine gel stiffness and tensile strength. Gene expression was assessed using Human Fibrosis and Cell Motility PCR arrays. RESULTS: TA-treated gels had a significantly higher contraction rate, tensile strength and stiffness than the untreated gels. Proteinases involved in remodeling had increased expression in TA-treated gels of the patient group. Pro-fibrotic genes and ECM regulators, such as TGF-ß, collagens and integrins, were down-regulated by TA, indicating that TA may work in part by decreasing fibrotic gene expression. CONCLUSIONS: This study showed that TA affects cell-matrix interaction and suppresses fibrotic gene expression in the SSCT cells of CTS patients.


Assuntos
Síndrome do Túnel Carpal/tratamento farmacológico , Fibroblastos/efeitos dos fármacos , Glucocorticoides/farmacologia , Triancinolona Acetonida/farmacologia , Síndrome do Túnel Carpal/metabolismo , Colágeno/metabolismo , Feminino , Fibroblastos/metabolismo , Glucocorticoides/uso terapêutico , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase , Cultura Primária de Células , Fator de Crescimento Transformador beta/metabolismo , Triancinolona Acetonida/uso terapêutico
20.
Stem Cells Int ; 2018: 3697971, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29977306

RESUMO

Tendon injuries are among the most common and severe hand injuries with a high demand for functional recovery. Stem cells have been identified and isolated from different species and a variety of tissues for the sake of regenerative medicine. Recently, turkey has been suggested as a potential new large animal model for flexor tendon-related research. However, turkey tissue-specific stem cells have not been investigated. Here, we presented the isolation and verification of tendon-derived stem cells (TDSCs) from 6- to 8-month-old heritage-breed turkey. TDSCs were isolated from turkey flexor tendon by plating nucleated cells at the determined optimal density. Approximately 4% of the nucleated cells demonstrated clonogenicity, high proliferation rate, and trilineage differentiation potential after induction culturing. These cells expressed surface antigens CD90, CD105, and CD44, but did not express CD45. There was a high level of gene expression of tenogenic markers in TDSCs, including mohawk, collagen type I, tenascin C, and elastin. Turkey TDSCs also expressed transcription factors PouV, Nanog, and Sox2, which are critically involved in the regulation of stemness. The successful isolation of tendon-derived stem cells from turkey was beneficial for future studies in tendon tissue engineering and would help in the development of new treatment for tendon diseases using this novel animal model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA