RESUMO
The covalent reversible modification of proteins is a validated strategy for the development of probes and candidate therapeutics. However, the covalent reversible targeting of noncatalytic lysines is particularly challenging. Herein, we characterize the 2-hydroxy-1-naphthaldehyde (HNA) fragment as a targeted covalent reversible ligand of a noncatalytic lysine (Lys720) of the Krev interaction trapped 1 (KRIT1) protein. We show that the interaction of HNA with KRIT1 is highly specific, results in prolonged residence time of >8 h, and inhibits the Heart of glass 1 (HEG1)-KRIT1 protein-protein interaction (PPI). Screening of HNA derivatives identified analogs exhibiting similar binding modes as the parent fragment but faster target engagement and stronger inhibition activity. These results demonstrate that HNA is an efficient site-directing fragment with promise in developing HEG1-KRIT1 PPI inhibitors. Further, the aldimine chemistry, when coupled with templating effects that promote proximity, can produce a long-lasting reversible covalent modification of noncatalytic lysines.
RESUMO
Canonical interleukin-2 (IL-2) signaling via the high-affinity CD25-containing IL-2 receptor-Janus kinase (JAK)1,3-signal transducer and activator of transcription 5 (STAT5) pathway is essential for development and maintenance of CD4+CD25HiFoxp3+ regulatory T cells (Tregs) that support immune homeostasis. Here, we report that IL-2 signaling via an alternative CD25-chemokine receptor pathway promotes the suppressive function of Tregs. Using an antibody against CD25 that biases IL-2 signaling toward this alternative pathway, we establish that this pathway increases the suppressive activity of Tregs and ameliorates murine experimental autoimmune encephalomyelitis (EAE). Furthermore, heparan sulfate, an IL-2-binding element of cell surfaces and extracellular matrix, or an engineered IL-2 immunocytokine can also direct IL-2 signaling toward this alternative pathway. Overall, these data reveal a non-canonical mechanism for IL-2 signaling that promotes suppressive functions of Tregs, further elucidates how IL-2 supports immune homeostasis, and suggests approaches to promote or suppress Treg functions.
Assuntos
Encefalomielite Autoimune Experimental , Linfócitos T Reguladores , Camundongos , Animais , Interleucina-2/metabolismo , Receptores de Quimiocinas/metabolismo , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Receptores de Interleucina-2/metabolismo , Transdução de Sinais , Fatores de Transcrição Forkhead/metabolismoRESUMO
Rap1 GTPase drives assembly of the Mig-10/RIAM/Lamellipodin (MRL protein)-integrin-talin (MIT) complex that enables integrin-dependent lymphocyte functions. Here we used tandem affinity tag-based proteomics to isolate and analyze the MIT complex and reveal that Phostensin (Ptsn), a regulatory subunit of protein phosphatase 1, is a component of the complex. Ptsn mediates dephosphorylation of Rap1, thereby preserving the activity and membrane localization of Rap1 to stabilize the MIT complex. CRISPR/Cas9-induced deletion of PPP1R18, which encodes Ptsn, markedly suppresses integrin activation in Jurkat human T cells. We generated apparently healthy Ppp1r18-/- mice that manifest lymphocytosis and reduced population of peripheral lymphoid tissues ascribable, in part, to defective activation of integrins αLß2 and α4ß7. Ppp1r18-/- T cells exhibit reduced capacity to induce colitis in a murine adoptive transfer model. Thus, Ptsn enables lymphocyte integrin-mediated functions by dephosphorylating Rap1 to stabilize the MIT complex. As a consequence, loss of Ptsn ameliorates T cell-mediated colitis.
Assuntos
Integrinas , Tecido Linfoide , Proteína Fosfatase 1 , Linfócitos T , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Adesão Celular/fisiologia , Colite/imunologia , Colite/metabolismo , Integrinas/imunologia , Integrinas/metabolismo , Tecido Linfoide/imunologia , Tecido Linfoide/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Proteína Fosfatase 1/imunologia , Proteína Fosfatase 1/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Talina/metabolismo , Proteínas rap1 de Ligação ao GTP/imunologia , Proteínas rap1 de Ligação ao GTP/metabolismoRESUMO
Agonist-induced Rap1 GTP loading results in integrin activation involved in T cell trafficking and functions. MRL proteins Rap1-interacting adapter molecule (RIAM) and lamellipodin (LPD) are Rap1 effectors that can recruit talin1 to integrins, resulting in integrin activation. Recent work also implicates direct Rap1-talin1 interaction in integrin activation. Here, we analyze in mice the connections between Rap1 and talin1 that support integrin activation in conventional CD4+ T (Tconv) and CD25HiFoxp3+CD4+ regulatory T (Treg) cells. Talin1(R35E, R118E) mutation that disrupts both Rap1 binding sites results in a partial defect in αLß2, α4ß1, and α4ß7 integrin activation in both Tconv and Treg cells with resulting defects in T cell homing. Talin1(R35E,R118E) Tconv manifested reduced capacity to induce colitis in an adoptive transfer mouse model. Loss of RIAM exacerbates the defects in Treg cell function caused by the talin1(R35E,R118E) mutation, and deleting both MRL proteins in combination with talin1(R35E,R118E) phenocopy the complete lack of integrin activation observed in Rap1a/b-null Treg cells. In sum, these data reveal the functionally significant connections between Rap1 and talin1 that enable αLß2, α4ß1, and α4ß7 integrin activation in CD4+ T cells.
Assuntos
Talina , Proteínas rap1 de Ligação ao GTP , Animais , Sítios de Ligação , Linfócitos T CD4-Positivos/metabolismo , Integrinas/metabolismo , Camundongos , Talina/genética , Talina/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismoRESUMO
The transmembrane protein heart of glass1 (HEG1) directly binds to and recruits Krev interaction trapped protein 1 (KRIT1) to endothelial junctions to form the HEG1-KRIT1 protein complex that establishes and maintains junctional integrity. Genetic inactivation or knockdown of endothelial HEG1 or KRIT1 leads to the upregulation of transcription factors Krüppel-like factors 4 and 2 (KLF4 and KLF2), which are implicated in endothelial vascular homeostasis; however, the effect of acute inhibition of the HEG1-KRIT1 interaction remains incompletely understood. Here, we report a high-throughput screening assay and molecular design of a small-molecule HEG1-KRIT1 inhibitor to uncover acute changes in signaling pathways downstream of the HEG1-KRIT1 protein complex disruption. The small-molecule HEG1-KRIT1 inhibitor 2 (HKi2) was demonstrated to be a bona fide inhibitor of the interaction between HEG1 and KRIT1 proteins, by competing orthosterically with HEG1 through covalent reversible interactions with the FERM (4.1, ezrin, radixin, and moesin) domain of KRIT1. The crystal structure of HKi2 bound to KRIT1 FERM revealed that it occupies the same binding pocket on KRIT1 as the HEG1 cytoplasmic tail. In human endothelial cells (ECs), acute inhibition of the HEG1-KRIT1 interaction by HKi2 increased KLF4 and KLF2 mRNA and protein levels, whereas a structurally similar inactive compound failed to do so. In zebrafish, HKi2 induced expression of klf2a in arterial and venous endothelium. Furthermore, genome-wide RNA transcriptome analysis of HKi2-treated ECs under static conditions revealed that, in addition to elevating KLF4 and KLF2 expression, inhibition of the HEG1-KRIT1 interaction mimics many of the transcriptional effects of laminar blood flow. Furthermore, HKi2-treated ECs also triggered Akt signaling in a phosphoinositide 3-kinase (PI3K)-dependent manner, as blocking PI3K activity blunted the Akt phosphorylation induced by HKi2. Finally, using an in vitro colocalization assay, we show that HKi6, an improved derivative of HKi2 with higher affinity for KRIT1, significantly impedes recruitment of KRIT1 to mitochondria-localized HEG1 in CHO cells, indicating a direct inhibition of the HEG1-KRIT1 interaction. Thus, our results demonstrate that early events of the acute inhibition of HEG1-KRIT1 interaction with HKi small-molecule inhibitors lead to: (i) elevated KLF4 and KLF2 gene expression; and (ii) increased Akt phosphorylation. Thus, HKi's provide new pharmacologic tools to study acute inhibition of the HEG1-KRIT1 protein complex and may provide insights to dissect early signaling events that regulate vascular homeostasis.
RESUMO
Interaction of talin with the cytoplasmic tails of integrin ß triggers integrin activation, leading to an increase of integrin affinity/avidity for extracellular ligands. In talin KO mice, loss of talin interaction with platelet integrin αIIbß3 causes a severe hemostatic defect, and loss of talin interaction with endothelial cell integrin αVß3 affects angiogenesis. In normal cells, talin is autoinhibited and localized in the cytoplasm. Here, we used an optogenetic platform to assess whether recruitment of full-length talin to the plasma membrane was sufficient to induce integrin activation. A dimerization module (Arabidopsis cryptochrome 2 fused to the N terminus of talin; N-terminal of cryptochrome-interacting basic helix-loop-helix domain ended with a CAAX box protein [C: cysteine; A: aliphatic amino acid; X: any C-terminal amino acid]) responsive to 450 nm (blue) light was inserted into Chinese hamster ovary cells and endothelial cells also expressing αIIbß3 or αVß3, respectively. Thus, exposure of the cells to blue light caused a rapid and reversible recruitment of Arabidopsis cryptochrome 2-talin to the N-terminal of cryptochrome-interacting basic helix-loop-helix domain ended with a CAAX box protein [C: cysteine; A: aliphatic amino acid; X: any C-terminal amino acid]-decorated plasma membrane. This resulted in ß3 integrin activation in both cell types, as well as increasing migration of the endothelial cells. However, membrane recruitment of talin was not sufficient for integrin activation, as membrane-associated Ras-related protein 1 (Rap1)-GTP was also required. Moreover, talin mutations that interfered with its direct binding to Rap1 abrogated ß3 integrin activation. Altogether, these results define a role for the plasma membrane recruitment of talin in ß3 integrin activation, and they suggest a nuanced sequence of events thereafter involving Rap1-GTP.
Assuntos
Membrana Celular/metabolismo , Citoplasma/metabolismo , Células Endoteliais/metabolismo , Optogenética , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Talina/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Células CHO , Cricetinae , Cricetulus , Camundongos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/genética , Ligação Proteica , Talina/genética , Proteínas rap1 de Ligação ao GTP/genéticaRESUMO
In this issue of Structure, Cho et al. (2020) identified an intermolecular interaction between two RIAM pleckstrin homology (PH) domains that masks the phosphoinositide-binding site, and that phosphorylation by Src unmasks the PH domain. This provides an explanation of how RIAM plasma membrane translocation is regulated to promote integrin activation.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Domínios de Homologia à Plecstrina , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Integrinas/metabolismo , Proteínas de Membrana/metabolismo , FosforilaçãoRESUMO
Integrin-mediated neutrophil adhesion starts by arrest from rolling. Activation of integrins involves conformational changes from an inactive, bent conformation to an extended conformation (E+) with high affinity for ligand binding (H+). The cytoplasmic protein kindlin-3 is necessary for leukocyte adhesion; mutations of kindlin-3 cause leukocyte adhesion deficiency type 3. Kindlin-3 binds the ß2-integrin cytoplasmic tail at a site distinct from talin-1, but the molecular mechanism by which kindlin-3 activates ß2-integrins is unknown. In this study, we measured the spatiotemporal dynamics of kindlin-3 and ß2-integrin conformation changes during neutrophil and HL-60 cell rolling and arrest under flow. Using high-resolution quantitative dynamic footprinting microscopy and kindlin-3-fluorescent protein (FP) fusion proteins, we found that kindlin-3 was recruited to the plasma membrane in response to interleukin-8 (IL-8) before induction of the H+ ß2-integrin conformation. Intravital imaging revealed that EGFP-kindlin-3-reconstituted, kindlin-3-knockout neutrophils arrest in vivo in response to CXCL1. EGFP-kindlin-3 in primary mouse neutrophils was also recruited to the plasma membrane before arrest. Upon arrest, we found small clusters of high-affinity ß2-integrin molecules within large areas of membrane-proximal kindlin-3 FP. Deletion of kindlin-3 or its pleckstrin homology (PH) domain in neutrophil-like HL-60 cells completely abolished H+ ß2-integrin induction. IL-8 also triggered recruitment of the isolated kindlin-3 PH domain to the plasma membrane before arrest. In summary, we showed that the kindlin-3 PH domain is necessary for recruitment to the plasma membrane, where full-length kindlin-3 is indispensable for the induction of high-affinity ß2-integrin.
Assuntos
Antígenos CD18/metabolismo , Migração e Rolagem de Leucócitos/fisiologia , Proteínas de Membrana/metabolismo , Proteínas de Neoplasias/metabolismo , Infiltração de Neutrófilos/fisiologia , Neutrófilos/metabolismo , Animais , Membrana Celular/metabolismo , Células HL-60 , Humanos , Camundongos , Transporte Proteico/fisiologiaRESUMO
Ras-related protein 1 (Rap1) is a major convergence point of the platelet-signaling pathways that result in talin-1 binding to the integrin ß cytoplasmic domain and consequent integrin activation, platelet aggregation, and effective hemostasis. The nature of the connection between Rap1 and talin-1 in integrin activation is an important remaining gap in our understanding of this process. Previous work identified a low-affinity Rap1-binding site in the talin-1 F0 domain that makes a small contribution to integrin activation in platelets. We recently identified an additional Rap1-binding site in the talin-1 F1 domain that makes a greater contribution than F0 in model systems. Here we generated mice bearing point mutations, which block Rap1 binding without affecting talin-1 expression, in either the talin-1 F1 domain (R118E) alone, which were viable, or in both the F0 and F1 domains (R35E,R118E), which were embryonic lethal. Loss of the Rap1-talin-1 F1 interaction in platelets markedly decreases talin-1-mediated activation of platelet ß1- and ß3-integrins. Integrin activation and platelet aggregation in mice whose platelets express only talin-1(R35E, R118E) are even more impaired, resembling the defect seen in platelets lacking both Rap1a and Rap1b. Although Rap1 is important in thrombopoiesis, platelet secretion, and surface exposure of phosphatidylserine, loss of the Rap1-talin-1 interaction in talin-1(R35E, R118E) platelets had little effect on these processes. These findings show that talin-1 is the principal direct effector of Rap1 GTPases that regulates platelet integrin activation in hemostasis.
Assuntos
Integrina beta1/metabolismo , Integrina beta3/metabolismo , Mutação Puntual , Talina/fisiologia , Trombopoese , Proteínas rap de Ligação ao GTP/fisiologia , Proteínas rap1 de Ligação ao GTP/fisiologia , Animais , Feminino , Integrina beta1/genética , Integrina beta3/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ativação Plaquetária , Agregação Plaquetária , Domínios Proteicos , Transdução de SinaisRESUMO
New work describes a novel mechanism of mechanotransduction, whereby force-induced membrane deformation activates integrins by disrupting the association of the transmembrane domains of α and ß integrins.
Assuntos
Integrinas , Bicamadas Lipídicas , Cadeias beta de Integrinas , Mecanotransdução Celular , Transdução de SinaisRESUMO
ß2 integrins are the main adhesion molecules in neutrophils and other leukocytes and are rapidly activated by inside-out signaling, which results in conformational changes that are transmitted through the transmembrane domain (TMD). Here, we investigated the biologic effect of introducing a proline mutation in the ß2 integrin TMD to create a flexible kink that uncouples the topology of the inner half of the TMD from the outer half and impairs integrin activation. The ß2 integrin alpha chains, αL, αM, αX, and αD, all contain an inserted (I) domain with homology to von Willebrand factor A domain. ß2 activation was monitored in a homogenous binding assay of 2 reporter monoclonal antibodies: KIM127 reporting extension (E+ ) and mAb24 reporting the high-affinity (H+ ) conformation of the ß2 I-like domain. The proline mutation partially diminished chemokine-induced extension, but not the high-affinity conformation. The proline mutation in the TMD of ß2 completely inhibited arrest of rolling HL-60 cells in response to the chemokine IL-8. TMD mutant HL-60 cells rolling on P-selectin and ICAM-1 were unable to reduce their rolling velocity in response to IL-8. Quantitative dynamic footprinting live-cell imaging showed that blocking TMD topology transmission impaired the chemokine-induced activation of ß2, limiting the appearance of extended high-affinity (E+ H+ ) ß2. This also resulted in a defect in early spreading (3 min after arrest), which could be overcome by forced integrin activation using Mn2+ . We conclude that the TMD proline mutation severely impairs ß2 integrin extension, cell arrest, and early spreading.
Assuntos
Antígenos CD18/metabolismo , Pontos de Checagem do Ciclo Celular , Migração e Rolagem de Leucócitos/fisiologia , Prolina/metabolismo , Antígenos CD18/química , Antígenos CD18/genética , Células HL-60 , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/metabolismo , Interleucina-8/farmacologia , Migração e Rolagem de Leucócitos/efeitos dos fármacos , Mutação , Selectina-P/genética , Selectina-P/metabolismo , Prolina/química , Prolina/genética , Conformação Proteica , Domínios ProteicosRESUMO
Rap1 GTPases bind effectors, such as RIAM, to enable talin1 to induce integrin activation. In addition, Rap1 binds directly to the talin1 F0 domain (F0); however, this interaction makes a limited contribution to integrin activation in CHO cells or platelets. Here, we show that talin1 F1 domain (F1) contains a previously undetected Rap1-binding site of similar affinity to that in F0. A structure-guided point mutant (R118E) in F1, which blocks Rap1 binding, abolishes the capacity of Rap1 to potentiate talin1-induced integrin activation. The capacity of F1 to mediate Rap1-dependent integrin activation depends on a unique loop in F1 that has a propensity to form a helix upon binding to membrane lipids. Basic membrane-facing residues of this helix are critical, as charge-reversal mutations led to dramatic suppression of talin1-dependent activation. Thus, a novel Rap1-binding site and a transient lipid-dependent helix in F1 work in tandem to enable a direct Rap1-talin1 interaction to cause integrin activation.
Assuntos
Integrinas/metabolismo , Lipídeos/fisiologia , Talina/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Animais , Sítios de Ligação , Células CHO , Cricetinae , Cricetulus , Humanos , Mutação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Complexo Shelterina , Talina/química , Talina/genética , Proteínas de Ligação a Telômeros/genéticaRESUMO
Activation of platelet glycoprotein IIb-IIIa (GPIIb-IIIa; integrin αIIbß3) leads to high-affinity fibrinogen binding and platelet aggregation during hemostasis. Whereas GTP-bound Rap1 GTPase promotes talin 1 binding to the ß3 cytoplasmic domain to activate platelet GPIIb-IIIa, the Rap1 effector that regulates talin association with ß3 in platelets is unknown. Rap1 binding to the talin 1 F0 subdomain was proposed to forge the talin 1-Rap1 link in platelets. Here, we report a talin 1 point mutant (R35E) that significantly reduces Rap1 affinity without a significant effect on its structure or expression. Talin 1 head domain (THD) (R35E) was of similar potency to wild-type THD in activating αIIbß3 in Chinese hamster ovary cells. Coexpression with activated Rap1b increased activation, and coexpression with Rap1GAP1 reduced activation caused by transfection of wild-type THD or THD(R35E). Furthermore, platelets from Tln1R35E/R35E mice showed similar GPIIb-IIIa activation to those from wild-type littermates in response to multiple agonists. Tln1R35E/R35E platelets exhibited slightly reduced platelet aggregation in response to low doses of agonists; however, there was not a significant hemostatic defect, as judged by tail bleeding times. Thus, the Rap1-talin 1 F0 interaction has little effect on platelet GPIIb-IIIa activation and hemostasis and cannot account for the dramatic effects of loss of Rap1 activity on these platelet functions.
Assuntos
Plaquetas/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/agonistas , Domínios e Motivos de Interação entre Proteínas , Talina/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Animais , Contagem de Células Sanguíneas , Células CHO , Cricetulus , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Mutação , Testes de Função Plaquetária , Conformação Proteica , Talina/química , Talina/genéticaRESUMO
Integrin activation regulates adhesion, extracellular matrix assembly, and cell migration, thereby playing an indispensable role in development and in many pathological processes. A proline mutation in the central integrin ß3 transmembrane domain (TMD) creates a flexible kink that uncouples the topology of the inner half of the TMD from the outer half. In this study, using leukocyte integrin α4ß7, which enables development of gut-associated lymphoid tissue (GALT), we examined the biological effect of such a proline mutation and report that it impairs agonist-induced talin-mediated activation of integrin α4ß7, thereby inhibiting rolling lymphocyte arrest, a key step in transmigration. Furthermore, the α4ß7(L721P) mutation blocks lymphocyte homing to and development of the GALT. These studies show that impairing the ability of an integrin ß TMD to transmit talin-induced TMD topology inhibits agonist-induced physiological integrin activation and biological function in development.
Assuntos
Trato Gastrointestinal/metabolismo , Cadeias beta de Integrinas/metabolismo , Integrinas/metabolismo , Linfócitos/metabolismo , Tecido Linfoide/metabolismo , Animais , Adesão Celular , Feminino , Trato Gastrointestinal/citologia , Trato Gastrointestinal/imunologia , Células HEK293 , Humanos , Cadeias beta de Integrinas/química , Cadeias beta de Integrinas/genética , Integrinas/química , Integrinas/genética , Células Jurkat , Migração e Rolagem de Leucócitos , Ativação Linfocitária , Linfócitos/imunologia , Tecido Linfoide/citologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Relação Estrutura-Atividade , Talina/genética , Talina/metabolismoRESUMO
Ras-interacting protein 1 (Rasip1) is an endothelial-specific Rap1 and Ras effector, important for vascular development and angiogenesis. Here, we report the crystal structure of the Rasip1 RA domain (RRA) alone, revealing the basis of dimerization, and in complex with Rap1 at 2.8 Å resolution. In contrast to most RA domains, RRA formed a dimer that can bind two Rap1 (KD = 0.9 µM) or Ras (KD = 2.2 µM) molecules. We solved the Rap1-RRA complex and found that Rasip1 binds Rap1 in the Switch I region, and Rap1 binding induces few conformation changes to Rasip1 stabilizing a ß strand and an unstructured loop. Our data explain how Rasip1 can act as a Rap1 and Ras effector and show that Rasip1 defines a subgroup of dimeric RA domains that could mediate cooperative binding to membrane-associated Ras superfamily members.
Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Sítios de Ligação , Dimerização , Humanos , Modelos Moleculares , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas rap1 de Ligação ao GTP/química , Proteínas ras/químicaRESUMO
Heart of Glass (HEG1), a transmembrane receptor, and Rasip1, an endothelial-specific Rap1-binding protein, are both essential for cardiovascular development. Here we performed a proteomic screen for novel HEG1 interactors and report that HEG1 binds directly to Rasip1. Rasip1 localizes to forming endothelial cell (EC) cell-cell junctions and silencing HEG1 prevents this localization. Conversely, mitochondria-targeted HEG1 relocalizes Rasip1 to mitochondria in cells. The Rasip1-binding site in HEG1 contains a 9 residue sequence, deletion of which abrogates HEG1's ability to recruit Rasip1. HEG1 binds to a central region of Rasip1 and deletion of this domain eliminates Rasip1's ability to bind HEG1, to translocate to EC junctions, to inhibit ROCK activity, and to maintain EC junctional integrity. These studies establish that the binding of HEG1 to Rasip1 mediates Rap1-dependent recruitment of Rasip1 to and stabilization of EC cell-cell junctions.
Assuntos
Células Endoteliais/fisiologia , Junções Intercelulares/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Linhagem Celular , Humanos , Ligação ProteicaRESUMO
Pneumolysin is a cholesterol-dependent cytolysin (CDC) and virulence factor of Streptococcus pneumoniae. It kills cells by forming pores assembled from oligomeric rings in cholesterol-containing membranes. Cryo-EM has revealed the structures of the membrane-surface bound pre-pore and inserted-pore oligomers, however the molecular contacts that mediate these oligomers are unknown because high-resolution information is not available. Here we have determined the crystal structure of full-length pneumolysin at 1.98 Å resolution. In the structure, crystal contacts demonstrate the likely interactions that enable polymerisation on the cell membrane and the molecular packing of the pre-pore complex. The hemolytic activity is abrogated in mutants that disrupt these intermolecular contacts, highlighting their importance during pore formation. An additional crystal structure of the membrane-binding domain alone suggests that changes in the conformation of a tryptophan rich-loop at the base of the toxin promote monomer-monomer interactions upon membrane binding by creating new contacts. Notably, residues at the interface are conserved in other members of the CDC family, suggesting a common mechanism for pore and pre-pore assembly.
Assuntos
Bicamadas Lipídicas/química , Porinas/química , Porinas/ultraestrutura , Estreptolisinas/química , Proteínas de Bactérias/química , Proteínas de Bactérias/ultraestrutura , Simulação por Computador , Modelos Químicos , Modelos Moleculares , Conformação Proteica , Estrutura Terciária de ProteínaRESUMO
BACKGROUND: Collectin-K1 (CL-K1, or CL-11) is a multifunctional Ca(2+)-dependent lectin with roles in innate immunity, apoptosis and embryogenesis. It binds to carbohydrates on pathogens to activate the lectin pathway of complement and together with its associated serine protease MASP-3 serves as a guidance cue for neural crest development. High serum levels are associated with disseminated intravascular coagulation, where spontaneous clotting can lead to multiple organ failure. Autosomal mutations in the CL-K1 or MASP-3 genes cause a developmental disorder called 3MC (Carnevale, Mingarelli, Malpuech and Michels) syndrome, characterised by facial, genital, renal and limb abnormalities. One of these mutations (Gly(204)Ser in the CL-K1 gene) is associated with undetectable levels of protein in the serum of affected individuals. RESULTS: In this study, we show that CL-K1 primarily targets a subset of high-mannose oligosaccharides present on both self- and non-self structures, and provide the structural basis for its ligand specificity. We also demonstrate that three disease-associated mutations prevent secretion of CL-K1 from mammalian cells, accounting for the protein deficiency observed in patients. Interestingly, none of the mutations prevent folding or oligomerization of recombinant fragments containing the mutations in vitro. Instead, they prevent Ca(2+) binding by the carbohydrate-recognition domains of CL-K1. We propose that failure to bind Ca(2+) during biosynthesis leads to structural defects that prevent secretion of CL-K1, thus providing a molecular explanation of the genetic disorder. CONCLUSIONS: We have established the sugar specificity of CL-K1 and demonstrated that it targets high-mannose oligosaccharides on self- and non-self structures via an extended binding site which recognises the terminal two mannose residues of the carbohydrate ligand. We have also shown that mutations associated with a rare developmental disorder called 3MC syndrome prevent the secretion of CL-K1, probably as a result of structural defects caused by disruption of Ca(2+) binding during biosynthesis.
Assuntos
Anormalidades Múltiplas/genética , Carboidratos/química , Colectinas/genética , Colectinas/metabolismo , Mutação/genética , Animais , Células CHO , Cálcio/metabolismo , Bovinos , Colectinas/química , Ativação do Complemento , Cricetinae , Cricetulus , Cristalografia por Raios X , Dissacarídeos/metabolismo , Glicoproteínas/metabolismo , Humanos , Cinética , Ligantes , Modelos Moleculares , Proteínas Mutantes/metabolismo , Ligação Proteica , Biossíntese de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos , SíndromeRESUMO
A cytosolic role for the histone methyltransferase Ezh2 in regulating lymphocyte activation has been suggested, but the molecular mechanisms underpinning this extranuclear function have remained unclear. Here we found that Ezh2 regulated the integrin signaling and adhesion dynamics of neutrophils and dendritic cells (DCs). Ezh2 deficiency impaired the integrin-dependent transendothelial migration of innate leukocytes and restricted disease progression in an animal model of multiple sclerosis. Direct methylation of talin, a key regulatory molecule in cell migration, by Ezh2 disrupted the binding of talin to F-actin and thereby promoted the turnover of adhesion structures. This regulatory effect was abolished by targeted disruption of the interactions of Ezh2 with the cytoskeletal-reorganization effector Vav1. Our studies reveal an unforeseen extranuclear function for Ezh2 in regulating adhesion dynamics, with implications for leukocyte migration, immune responses and potentially pathogenic processes.
Assuntos
Núcleo Celular/metabolismo , Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Esclerose Múltipla/imunologia , Neutrófilos/imunologia , Complexo Repressor Polycomb 2/metabolismo , Talina/metabolismo , Actinas/metabolismo , Animais , Adesão Celular/genética , Movimento Celular , Células Cultivadas , Modelos Animais de Doenças , Proteína Potenciadora do Homólogo 2 de Zeste , Humanos , Ativação Linfocitária/genética , Metilação , Camundongos , Camundongos Knockout , Complexo Repressor Polycomb 2/genética , Ligação Proteica/genética , Proteínas Proto-Oncogênicas c-vav/metabolismo , Talina/genética , Migração Transendotelial e Transepitelial/genéticaRESUMO
Ischemic damage is recognized to cause cardiomyocyte (CM) death and myocardial dysfunction, but the role of cell-matrix interactions and integrins in this process has not been extensively studied. Expression of α7ß1D integrin, the dominant integrin in normal adult CMs, increases during ischemia/reperfusion (I/R), while deficiency of ß1 integrins increases ischemic damage. We hypothesized that the forced overexpression of integrins on the CM would offer protection from I/R injury. Tg mice with CM-specific overexpression of integrin α7ß1D exposed to I/R had a substantial reduction in infarct size compared with that of α5ß1D-overexpressing mice and WT littermate controls. Using isolated CMs, we found that α7ß1D preserved mitochondrial membrane potential during hypoxia/reoxygenation (H/R) injury via inhibition of mitochondrial Ca2+ overload but did not alter H/R effects on oxidative stress. Therefore, we assessed Ca2+ handling proteins in the CM and found that ß1D integrin colocalized with ryanodine receptor 2 (RyR2) in CM T-tubules, complexed with RyR2 in human and rat heart, and specifically bound to RyR2 amino acids 165-175. Integrins stabilized the RyR2 interdomain interaction, and this stabilization required integrin receptor binding to its ECM ligand. These data suggest that α7ß1D integrin modifies Ca2+ regulatory pathways and offers a means to protect the myocardium from ischemic injury.