RESUMO
We developed a medical image segmentation and preoperative planning application which implements a semiautomatic and a hybrid semiautomatic liver segmentation algorithm. The aim of this study was to evaluate the feasibility of computer-assisted liver tumor surgery using these algorithms which are based on thresholding by pixel intensity value from initial seed points. A random sample of 12 patients undergoing elective high-risk hepatectomies at our institution was prospectively selected to undergo computer-assisted surgery using our algorithms (June 2013-July 2014). Quantitative and qualitative evaluation was performed. The average computer analysis time (segmentation, resection planning, volumetry, visualization) was 45 min/dataset. The runtime for the semiautomatic algorithm was <0.2 s/slice. Liver volumetric segmentation using the hybrid method was achieved in 12.9 s/dataset (SD ± 6.14). Mean similarity index was 96.2 % (SD ± 1.6). The future liver remnant volume calculated by the application showed a correlation of 0.99 to that calculated using manual boundary tracing. The 3D liver models and the virtual liver resections had an acceptable coincidence with the real intraoperative findings. The patient-specific 3D models produced using our semiautomatic and hybrid semiautomatic segmentation algorithms proved to be accurate for the preoperative planning in liver tumor surgery and effectively enhanced the intraoperative medical image guidance.
Assuntos
Algoritmos , Neoplasias Hepáticas/cirurgia , Cirurgia Assistida por Computador , Adulto , Idoso , Feminino , Humanos , Imageamento Tridimensional , Fígado/patologia , Fígado/cirurgia , Neoplasias Hepáticas/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Tamanho do Órgão , Reprodutibilidade dos TestesRESUMO
Laparoscopy is an established method for the treatment of numerous surgical conditions. Natural orifice transluminal endoscopic surgery (NOTES) is a novel surgical technique that uses the natural orifices of the human body as entrances to the abdominal cavity. An alternative concept of minimally invasive approach to the abdominal cavity is to insert all the laparoscopic instruments through ports using a single small incision on the abdominal wall. A suggested name for this technique is laparoendoscopic single-site surgery (LESS). Considering the technical difficulties in NOTES and LESS and the progress in informatics and robotics, the use of robots seems ideal. The aim of this study is to investigate if there is at present, a realistic possibility of using miniature robots in NOTES or LESS in daily clinical practice. An up-to-date review on in vivo surgical miniature robots is made. A Web-based research of the English literature up to March 2013 using PubMed, Scopus, and Google Scholar as search engines was performed. The development of in vivo miniature robots for use in NOTES or LESS is a reality with great advancements, potential advantages, and possible application in minimally invasive surgery in the future. However, true totally NOTES or LESS procedures on humans using miniature robots either solely or as assistance, remain a dream at present.
Assuntos
Miniaturização , Cirurgia Endoscópica por Orifício Natural , Procedimentos Cirúrgicos Robóticos , HumanosRESUMO
Aim. Modular mini-robots can be used in novel minimally invasive surgery techniques like natural orifice transluminal endoscopic surgery (NOTES) and laparoendoscopic single site (LESS) surgery. The control of these miniature assistants is complicated. The aim of this study is the in silico investigation of a remote controlling interface for modular miniature robots which can be used in minimally invasive surgery. Methods. The conceptual controlling system was developed, programmed, and simulated using professional robotics simulation software. Three different modes of control were programmed. The remote controlling surgical interface was virtually designed as a high scale representation of the respective modular mini-robot, therefore a modular controlling system itself. Results. With the proposed modular controlling system the user could easily identify the conformation of the modular mini-robot and adequately modify it as needed. The arrangement of each module was always known. The in silico investigation gave useful information regarding the controlling mode, the adequate speed of rearrangements, and the number of modules needed for efficient working tasks. Conclusions. The proposed conceptual model may promote the research and development of more sophisticated modular controlling systems. Modular surgical interfaces may improve the handling and the dexterity of modular miniature robots during minimally invasive procedures.
RESUMO
OBJECTIVES: During the last few years, wireless networks have been increasingly used both inside hospitals and in patients' homes to transmit medical information. In general, wireless networks suffer from decreased security. However, digital watermarking can be used to secure medical information. In this study, we focused on combining wireless transmission and digital watermarking technologies to better secure the transmission of medical images within and outside the hospital. METHODS: We utilized an integrated system comprising the wireless network and the digital watermarking module to conduct a series of tests. RESULTS: The test results were evaluated by medical consultants. They concluded that the images suffered no visible quality degradation and maintained their diagnostic integrity. DISCUSSION: The proposed integrated system presented reasonable stability, and its performance was comparable to that of a fixed network. This system can enhance security during the transmission of medical images through a wireless channel.