Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 338(2): 168-82, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19962975

RESUMO

While the signaling pathways and transcription factors active in adult slow- and fast-type muscles begin to be characterized, genesis of muscle fiber-type diversity during mammalian development remains unexplained. We provide evidence showing that Six homeoproteins are required to activate the fast-type muscle program in the mouse primary myotome. Affymetrix transcriptomal analysis of Six1(-/-)Six4(-/-) E10.5 somites revealed the specific down-regulation of many genes of the fast-type muscle program. This data was confirmed by in situ hybridization performed on Six1(-/-)Six4(-/-) embryos. The first mouse myocytes express both fast-type and slow-type muscle genes. In these fibers, Six1 and Six4 expression is required to specifically activate fast-type muscle genes. Chromatin immunoprecipitation experiments confirm the binding of Six1 and Six4 on the regulatory regions of these muscle genes, and transfection experiments show the ability of these homeoproteins to activate specifically identified fast-type muscle genes. This in vivo wide transcriptomal analysis of the function of the master myogenic determinants, Six, identifies them as novel markers for the differential activation of a specific muscle program during mammalian somitic myogenesis.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/fisiologia , Fibras Musculares de Contração Rápida , Proteínas Musculares/genética , Transativadores/fisiologia , Animais , Embrião de Mamíferos , Proteínas de Homeodomínio/genética , Camundongos , Desenvolvimento Muscular , Somitos , Transativadores/genética
2.
Proc Natl Acad Sci U S A ; 104(27): 11310-5, 2007 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-17592144

RESUMO

Myf5, a member of the myogenic regulatory factor family, plays a major role in determining myogenic cell fate at the onset of skeletal muscle formation in the embryo. Spatiotemporal control of its expression during development requires multiple enhancer elements spread over >100 kb at the Myf5 locus. Transcription in embryonic limbs is regulated by a 145-bp element located at -57.5 kb from the Myf5 gene. In the present study we show that Myf5 expression is severely impaired in the limb buds of Six1(-/-) and Six1(-/-)Six4(-/+) mouse mutants despite the presence of myogenic progenitor cells. The 145-bp regulatory element contains a sequence that binds Six1 and Six4 in electromobility shift assays in vitro and in chromatin immunoprecipitation assays with embryonic extracts. We further show that Six1 is able to transactivate a reporter gene under the control of this sequence. In vivo functionality of the Six binding site is demonstrated by transgenic analysis. Mutation of this site impairs reporter gene expression in the limbs and in mature somites where the 145-bp regulatory element is also active. Six1/4 therefore regulate Myf5 transcription, together with Pax3, which was previously shown to be required for the activity of the 145-bp element. Six homeoproteins, which also directly regulate the myogenic differentiation gene Myogenin and lie genetically upstream of Pax3, thus control hypaxial myogenesis at multiple levels.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/fisiologia , Fator Regulador Miogênico 5/biossíntese , Fator Regulador Miogênico 5/genética , Transativadores/fisiologia , Animais , Sequência de Bases , Células Cultivadas , Embrião de Galinha , Proteínas de Homeodomínio/genética , Botões de Extremidades , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Dados de Sequência Molecular , Fator Regulador Miogênico 5/metabolismo , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados/fisiologia , Transativadores/deficiência , Transativadores/genética
3.
Dev Biol ; 302(2): 602-16, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17098221

RESUMO

In mammals, Pax3, Six4, Six1 and Six5 genes are co-expressed with Eya1, Eya2 and Eya4 genes during mouse somitogenesis. To unravel the functions of Eya genes during muscle development, we analyzed myogenesis in Eya2-/- and in Eya1-/- embryos. A delay in limb myogenesis was observed between E10 and E13 in Eya1-/- embryos only, that is later compensated. Compound E18 Eya1-/-Eya2-/+ fetuses present a muscle phenotype comparable with that of Six1-/- fetuses; lacking a diaphragm and with a specific absence of limb muscles, suggesting either genetic epistasis between Six and Eya genes, or biochemical interactions between Six and Eya proteins. We tested these two non-exclusive possibilities. First, we show that Six proteins recruit Eya proteins to drive transcription during embryogenesis in the dermomyotomal epaxial and hypaxial lips of the somites by binding MEF3 DNA sites. Second, we show that Pax3 expression is lost in the ventrolateral (hypaxial) dermomyotomes of the somite in both Eya1-/-Eya2-/- embryos and in Six1-/-Six4-/- embryos, precluding hypaxial lip formation. This structure, from which myogenic cells delaminate to invade the limb does not form in these double mutant embryos, leading to limb buds without myogenic progenitor cells. Eya1 and Eya2, however, are still expressed in the somites of Six1Six4 double mutant and in splotch embryos, and Six1 is expressed in the somites of Eya1Eya2 double mutant embryos and in splotch embryos. Altogether these results show that Six and Eya genes lie genetically upstream of Pax3 gene in the formation of ventrolateral dermomyotome hypaxial lips. No genetic links have been characterized between Six and Eya genes, but corresponding proteins activate key muscle determination genes (Myod, Myogenin and Mrf4). These results establish a new hierarchy of genes controlling early steps of hypaxial myogenic commitment in the mouse embryo.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Músculo Esquelético/fisiologia , Proteínas Nucleares/fisiologia , Proteínas Tirosina Fosfatases/fisiologia , Somitos/fisiologia , Animais , Padronização Corporal/fisiologia , Movimento Celular/fisiologia , Elementos Facilitadores Genéticos , Extremidades/embriologia , Extremidades/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Knockout , Desenvolvimento Muscular , Músculo Esquelético/embriologia , Proteína MyoD/metabolismo , Fatores de Regulação Miogênica/metabolismo , Miogenina/metabolismo , Proteínas Nucleares/genética , Fator de Transcrição PAX3 , Fatores de Transcrição Box Pareados/metabolismo , Regiões Promotoras Genéticas , Proteínas Tirosina Fosfatases/genética
4.
Mol Cell Biol ; 26(17): 6664-74, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16914747

RESUMO

Serum response factor (SRF) is a crucial transcriptional factor for muscle-specific gene expression. We investigated SRF function in adult skeletal muscles, using mice with a postmitotic myofiber-targeted disruption of the SRF gene. Mutant mice displayed severe skeletal muscle mass reductions due to a postnatal muscle growth defect resulting in highly hypotrophic adult myofibers. SRF-depleted myofibers also failed to regenerate following injury. Muscles lacking SRF had very low levels of muscle creatine kinase and skeletal alpha-actin (SKA) transcripts and displayed other alterations to the gene expression program, indicating an overall immaturity of mutant muscles. This loss of SKA expression, together with a decrease in beta-tropomyosin expression, contributed to myofiber growth defects, as suggested by the extensive sarcomere disorganization found in mutant muscles. However, we observed a downregulation of interleukin 4 (IL-4) and insulin-like growth factor 1 (IGF-1) expression in mutant myofibers which could also account for their defective growth and regeneration. Indeed, our demonstration of SRF binding to interleukin 4 and IGF-1 promoters in vivo suggests a new crucial role for SRF in pathways involved in muscle growth and regeneration.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Interleucina-4/metabolismo , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/fisiologia , Regeneração , Fator de Resposta Sérica/metabolismo , Animais , Animais Recém-Nascidos , Sequência de Bases , Núcleo Celular/metabolismo , Tamanho Celular , Regulação da Expressão Gênica , Fator de Crescimento Insulin-Like I/genética , Integrases/genética , Interleucina-4/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dados de Sequência Molecular , Músculo Esquelético/citologia , Músculo Esquelético/ultraestrutura , Tamanho do Órgão , Fenótipo , Regiões Promotoras Genéticas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sarcômeros/patologia , Sarcômeros/ultraestrutura , Fator de Resposta Sérica/deficiência , Fator de Resposta Sérica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA